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FOREWORD 

This report documents the work performed by the IIT 

Research Institute, Chicago, Illinois in fulfillment of the 

requirements of the National Aeronautics and Space Adminis- 

tration Contract NAS2-2401. This contract was administered 

under the technical cognizance of Mr. John S. White of the 

Ames Research Center, Moffett Field, California. 

Studies presented in this report began in October, 1964 

and were concluded in August, 1965, The work was performed 

by the Guidance and Control Section under the direction of 

Alan L. Friedlander as Project Engineer. Principal contri- 

butors to the project were Messrs, H, Feingold, A, Friedlander, 

and J. Waters, 
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SUMMARY 

This report describes the results of a navigation study 

applied to thrusted interplanetary vehicles powered by an electric 

propulsion system. A navigation concept is formulated wherein 

both celestial and inertial source information are utilized for 

in-flight determination of vehicle motion. The celestial obser- 

vations provide the means for significantly reducing the long 

term effects of inertial gyro and accelerometer errors. Summary 

Figure l(a) illustrates the navigation system concept in func- 

tional block diagram form. A pair of gimballed star trackers 

(stellar monitor) integral with the inertial measurement unit 

serve to align and stabilize the space-fixed coordinate frame, 

Additional celestial sensors such as planet trackers or sextants 

measure appropriate space angles from which vehicle position may 

be found. Of principal interest to this study is the navigation 

computer whose main function is to process the available infor- 

mation so as to obtain the best estimate of the vehicle state in 

the presence of random instrumentation errors, 

Summary Figure l(b) shows the computational structure of 

the state estimation procedure. This procedure is based on con- 

cepts of optimal linear filter theory (Kalman filter). The vehl- 

cle state includes, in addition to position and velocity, instru- 

mentation errors having time-correlated statistical properties, 

Hence, the estimation procedure allows in-flight calibration and 

correction of instrumentation errors. Of particular importance 

here is the estimation of the low-level accelerometer errors 
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which may be significantly improved over Earth-based calibration 

methods. As indicated in the figure, celestial angle measurements 

are assumed to be made at discrete times whereas acceleration 

measurements are assumed continuous (or9 effectively continuous 

compared with the celestial sampling rate), The filtering pro- 

cess is also discrete. At the celestial measurement time, the 

weighted difference between the measured and estimated space 

angle is the incremental correction applied to the previous esti- 

mate of the state. The new and improved estimate, then, is the 

updated initial condition used in the solution ofthe dynamical 

state equations over the next cycle. 

A digital computer simulation was developed to evaluate the 

performance of the celestial-inertial navigation concept for 

several different missions and error parameter assumptions, This 

simulation obtains the ensemble second-order statistics, or co- 

variance, of the error in estimating the state at each successive 

observation point. Summary Figure 2 shows a representative per- 

formance comparison between an inertial-only and an optimal 

celestial-inertial estimation of vehicle position, Plotted is 

the RMS position uncertainty as a function of time for a 205.4 

day Mars rendezvous mission. The reference trajectory has a 97 

day coast period beginning at about 52 days from heliocentric 

injection, and has an average thrust acceleration level of about 

10-4g. The RMS error parameters assumed are (1) initial velocity 

uncertainty-5 m/set, (2) accelerometer bias and random error-10 -7 g, 

and (3) random celestial sensor error - 10 set arc, The lines- 

of sight to both Earth and Mars are measures at 2 day intervals,, 
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It is seen that the unbounded effect of inertial system errors 

result in a position uncertainty of about 300,000 km at the nom- 

inal rendezvous time. In contrast, this position uncertainty is 

only 500 km for the celestial-inertial system. Furthermore, the 

improved performance over the entire flight is quite significant. 

Similar results are found for velocity estimation where the 

terminal uncertainty is only 0.25 m/set as compared with 40 m/set 

for inertial-only measurements. Also, the accelerometer bias 

estimate is improved by a factor of 35 as a result of the celes- 

tial observations. 

It is perhaps unrealistic to expect the low-frequency 

accelerometer error to remain constant throughout the entire 

mission, i.e., to be a pure bias. More practically, this error 

may result from a slowly changing calibration, such as due to 

aging. 9 account for this situation, the low-frequency error 

was modeled more generally by an exponentially-correlated random 

process having a rather long time constant, Summary Figure 2 

includes the position uncertainty characteristic for a correla- 

tion time of 200 days. It is seen that, beyond mid-flight, the 

position uncertainty becomes significantly larger than that 

associated with the pure bias. At the terminal time, the posi- 

tion uncertainty is about 1500 km. The cause of the poorer 

performance is due to the difficulty in estimating a non-constant 

accelerometer error even when the correlation time is of the 

same order as the total flight time. This was a somewhat sur- 

prising and discouraging result,, Perhaps more frequent planet 

sightings would improve this situation. 
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ANALYSIS OF AN OPTIMAL CELESTIAL-INERTIAL 
NAVIGATION CONCEPT FOR LOW-THRUa 

INTERPLANETARY VEHICLES 

1. INTRODUCTION 

The application of electric propulsion systems (low 

thrust, high specific impulse) to upper stage space vehicles 

is looked upon as offering a high performance potential for 

carrying out a long-range, comprehensive plan of solar system 

exploration. Considerable effort is now underway toward the 

development of lightweight and reliable advanced propulsion 

systems which are necessary if this potential is to be rea- 

lized. Delineation and solution of the guidance problems 

associated with such vehicle systems is considered to be an 

important complementary step in this development effort. 

To be definitive, the term guidance is meant to en- 

compass both the navigation and trajectory control functions. 

Navigation is the process of determining, through appropriate 

measurements, the vehicle's present state as given, for example, 

by position and velocity in some known frame of reference, The 

trajecto'ry control function is to utilize the navigational 

information in some computational (prediction) procedure as to 

provide thrust acceleration commands that will direct the 

vehicle to its desired target. 
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The study described herein is concerned only with the 

navigation or trajectory estimation problem. In particular, 

the overall objective of this study is the theoretical formu- 

lation and performance evaluation of a low-thrust navigation 

procedure which utilizes inertial and celestial source infor- 

mation obtained from instrumentation contained on board the 

vehicle. The instrumentation system is invariably imperfect; 

that is, the measurements are subject to unpredictable or 

random errors. As a result of these errors and the uncertainty 

of initial conditions, the present vehicle state can never be 

known precisely, The function of the navigation procedure, 

then, is to process the available information in such a manner 

as to obtain the best estimate of the vehicle state, It is 

towards this purpose of obtaining the best estimate that both 

inertial and celestial measurements are considered. The moti- 

vating factor here lies in the tacit assumption that the unde- 

sirable effects of the error characteristics inherent to each 

type of navigation system acting alone can be minimized by 

properly combining or mixing the information 3fboth systems 

acting together, Thus, for example, stellar sightings may be 

used to compensate for gyro drift while planetary sightings 

yield position data which act to damp the unbounded effects of 

accelerometer errors, On the other hand, direct measurement 

of acceleration provides a better source of velocity informa- 

tion than could normally be obtained from celestial angle mea- 

surements. 

-2- 



The problem of estimating vehicle position and velocity 

from information subject to random errors is basically a data 

filtering problem. Accordingly, the problem is treated by 

means of optimal statistical filter theory, prinicpally due to 

Kalman (Ref. 1). The optimizing criterion is, effectively, the 

minimization of the estimation error variance. This theory has 

been applied in several studies of lunar and interplanetary 

trajectory estimation for vehicles under "free-fall" or bal- 

listic conditions where information is assumed to be available 

from celestial observations (Refs. 2,3,4,5). It has also been 

applied to the low-thrust navigation problem where only celes- 

tial observations were assumed available (Ref, 61, The present 

study is an extension of this previous work, and differs mainly 

in that information regarding both the input and output deter- 

minants of vehicle motion are considered. 

The content and organization of this report is as 

follows: Section 2 presents a brief background discussion of 

low-thrust propulsion, trajectory and mission characteristics, 

and of the navigation problem, The mathematical formulation 

and analysis of the celestial-inertial navigation concept is 

presented in Section 3. Included in this section are a descrip- 

tion of both the inertial and celestial measurement processes 

and the assumed statistical characteristics of the instrumenta- 

tion errors, a brief analysis of gyro drift compensation pro- 

vided by star fixes and appropriate correction of inertial 
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platform misalignment, the linearized trajectory model, and 

finally the state estimation equations,, Section 4 describes 

the digital computer simulation program which was developed 

during the course of this study in order to evaluate the per- 

formance of the navigation procedure,, Numerical results ob- 

tained from the computer program are discussed in Section 5, 
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2. BACKGROUND DISCUSSION 

2.1 Summary of Prooulsion/Traiector 
Characteristics 

Space navigation having been defined as the process 

of estimating the state of a vehicle's trajectory, it is clear 

that the navigation process will be influenced by the nature of 

the trajectory. The trajectory, in turn, is influenced by the 

mode of propulsion system operation. This influence may appear 

in the structure of the navigation concept and system and cer- 

tainly in the magnitude of the system parameters, Since this 

study specifically treats the low-thrust navigation problem, 

a brief discussion of low-thrust propulsion and trajectory 

characteristics would appear to be in order at this point. The 

intent is to summarize these characteristics mainly as they 

relate to the navigation analysis and results to follow, A 

comprehensive discussion of electric propulsion systems and 

trajectories may be found in the numerous publications on this 

subject (e.g., references 7,8 and 9). 

Propulsion 

Basically, an electric rocket engine is a device in 

which charged particles or ions are accelerated to high velo- 

cities by either electrostatic or electromagnetic fields, and 

then expelled rearward to produce useful thrust, Depending 

upon the particular vehicle system design and mission applica- 

tion, the thrust produced per unit vehicle weight will lie 
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within the range 10 -!j to 1o-3. 

level: the electric rocket must 

Due to this low acceleration 

be operated continuously during 

a significant portion of a mission which may extend over many 

months or years, In addition, the nature of the mission tra- 

Jectory differs from the familiar ballistic or "free-fall" 

trajectory, These factors make the low-thrust guidance problem 

somewhat unique., 

Whereas chemical and nuclear propulsion systems are 

basically energy-limited, electric propulsion systems are 
* 

power-limited, i.e,, limited in performance by the character- 

istics (power level and weight) of the separate powerplant. 

It is generally assumed that the powerplant will be operated 

at its maximum power rating during periods of thrustor opera- 

tion, This constant power constraint reflects upon the nec- 

essary regulation of propellant flow rate $I) and Jet velocity 

(Vj): or:, alternatively. thrust (F) and specific impulse (I 
sP 

). 

The quantitative relations are (in MKS units) 

(1) 

= FV* = F1 go J sP 

where P 
j 

is the kinetic power in the exhaust jet, In terms of 

thrust acceleration, 

F 2P. 
a Z- M = MI go 

sP 
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The limitation imposed on the acceleration level of 

electric propulsion systems is readily found from the above 

expression. Based on the projected state-of-the-art of nuclear- 

turboelectric powerplants, a realistic upper limit on Pj/Mo is 

of the order 45 watts/kg. Similarly, a realistic lower limit 

on I 
sP 

for ion engine systems is about 3000 sec. Substitution 

of these numbers into (2) gives the result 

a o < 3 x 10B3 m/sec2 (3 x 10-4g) 

Of course, for many missions the required I 
sP 

will be much 

higher than 3000 set, An initial acceleration of 10e4g or less 

is more typical for interplanetary missions, 

Combining equations (1) and (2) and integrating yields 

the characteristicmass equation for power-limited propulsion 

1 1 
M(tf 1 =M(O)+ 

1 tf 
2P s j G 

a2 (t) dt (3) 

For a given initial mass and jet power, it is seen that mini- 

mizing la2dt is equivalent to maximizing the final mass of the 

vehicle. This criterion is commonly used in the formulation 

and solution of the trajectory optimization problem, Note that 

this result marks a basic difference between energy-limited 

and power-limited propulsion. For a constant thrust chemical 

system, the propellant-optimal trajectory requires that the 

characteristic velocity, j adt, be a minimum, Of course, in 
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the case where the electric propulsion system is operated at 

a constant thrust level (and, therefore, constant specific 

impulse), the two criteria are equivalent, This brings us to 

the final point to be made concerning propulsion: i,e,. the 

mode of thrustor operation., 

Two different modes of thrustor operation are consi- 

dered in most trajectory and mission studies - one theoretical 

and the other practical, These are 

1. Variable thrust 
2, Constant thrust 

In the variable thrust mode it is assumed that any thrust 

level and specific impulse can be obtained consistent with the 

constant power constraint, Hence, these parameters are allowed 

to vary with time (in conjunction with an optimum steering 

program) in an optimum fashion such that the trajectory boun- 

dary conditions of the mission are achieved with minimum 5 a2dt, 

In this case, j a2dt is not a function of the propulsion system 

parameters but rather depends only upon the specified boundary 

conditions. Variable thrust, then, is the least restrictive 

mode of operation and, hence, yields the best possible perfor- 

mance (minimum propellant requirements), 

In the constant thrust mode of operation, the constraint 

imposed upon thrust and specific impulse must result in a per- 

formance loss, Also, j a2dt depends upon the system parameters 

in addition to the trajectory boundary conditions. It is 
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possible to choose these parameters (e.g., a0 and I 
sP 

) so that 

the performance loss is made small, Even so, the performance 

loss could be as high as 15 percent depending upon the mis- 

sion application, 

Although the constant thrust mode of operation is con- 

sidered more realistic in terms of the electric thrustors cur- 

rently under development, future advances in the state-of-the- 

art may allow the variable thrust mode. Even if a single 

thrustor could not be made to operate within a wide range of 

thrust and specific impulse, it may be possible to achieve the 

desired characteristic by employing several banks of thrustors 

each operating under different design conditions, To account 

for this possibility, both constant and variable thrust trajec- 

tories will be considered 

the navigation concept, 

Mission Applications 

when illustrating the performance of 

Of the various missions proposed for electrically pro- 

pelled space vehicles, the following are representative classes 

1, Earth orbital operations 
2, Lunar transport ferry 
3. Out-of-the ecliptic probes 
4, Planetary fly-by and rendezvous 

Earth orbital operations might include altitude and orbital 

plane maneuvers for the purpose of detailed mapping of scienti- 

fic phenomena. It has been suggested that the transport ferry 

could efficiently deliver large payloads from Earth to lunar 

-9- 



orbit if the time factor is not critical, The high energy re- 

quirement of the out-of-the-ecliptic scientific mission makes 

electric propulsion particularly advantageous., This is true 

also of fly-by or orbiter (rendezvous and capture) missions to 

the outer planets, or round-trip missions to the inner planets, 

The interplanetary mission being of more general applicability, 

we shall restrict our attention to it, 

A typical interplanetary mission may be conveniently 

divided into several distinct phases, namely, the escape spiral 

phase, the heliocentric or midcourse phase, and the capture 

spiral phase. The first phase begins in a low-altitude satel- 

lite orbit about Earth and terminates at or slightly beyond 

the escape energy condition which may occur at a distance of 

several hundred thousand miles. During this phase thrust is 

directed in such a manner as to efficiently increase the orbital 

energy. This causes the spacecraft to slowly spiral about Earth 

with increasing orbital altitude., The midcourse phase of the 

mission refers to the region of heliocentric space between the 

orbits of Earth and the destination planet, Duration of powered 

flight in this phase depends upon the particular vehicle and 

mission design. For example, a short trip time may necessitate 

continuous operation of the electric thrustors, For longer 

flights, coast periods may be inserted in order to conserve pro- 

pellant. The capture spiral phase begins at a distance of 

several hundred thousand miles from the destination planet, 
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with thrust directed to cause the spacecraft to achieve the 

desired satellite orbit, In the case of the planetary fly-by 

mission, this final phase may either be entirely eliminated or 

terminated at some energy level prior to capture. 

2,2 The Naviaation Problem 

Closed-loop guidance of electrically propelled space- 

craft is made necessary by the fact that in-flight errors in 

establishing the proper initial conditions, thrust accelera- 

tion magnitude, and steering direction cause the spacecraft to 

deviate from its design trajectory. Correction of this devia- 

tion requires knowledge of the vehicle state, either continu- 

ously or at discrete time intervals, Assuming the desirability 

of a self-contained (on-board) navigation system, such informa- 

tion can be made available from either celestial measurements 

or inertial acceleration measurements, or both, 

Celestial navigation techniques applicable to ballistic 

flight are well known, Basically, celestial angle measurements 

yield vehicle position information, Velocity information must 

be determined indirectly either through differentiation of 

position or) more commonly? via the laws of orbital mechanics, 

In the case of thrusted flight, position and velocity may still 

be determined by celestial means provided the acceleration time- 

history between observations is known. Therein lies the crux of 

the problem since velocity information so obtained is apt to be 
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relatively unreliable unless acceleration is accurately pre- 

dictable or measured in-flight. 

It is probably not realistic to expect an a priori pre- 

diction of acceleration magnitude and direction to be accurate 

enough for navigation requirements, Off-nominal thrust con- 

ditions of several percent can probably be expected from elec- 

tric thrustors. Also, the vehicle mass may not be known 

exactly. Thrust direction errors resulting from imprecise 

attitude control or ion beam deflection may typically be on 

the order of one degree. Even if these errors were of smaller 

magnitude, their time variation would likely be unpredictable,, 

As a means of alleviating this problem, celestial measurements 

could be utilized to obtain certain gross features of thrust 

acceleration, however, the accuracy of the celestial sensors 

would limit this approach. It would appear that no adequate 

substitute exists for high quality inertial measurements of 

acceleration, 

A pure inertial system could, of course, perform the 

navigation function. However, the propagation of initial con- 

dition uncertainties and the errors of even high quality iner- 

tial components could prove significant over the long flight 

duration of low thrust missions. For example, an advanced 

state-of-the-art gyro having a constant drift as little as 

0.001 deg/hr would cause the reference axes to be misaligned 

by 5 deg at the end of a 200 day flight, Or, an accelerometer 
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error of lo- g would result in a position uncertainty of about 

1007000 km at the end of this flight, Some means for damping 

or reducing these errors is necessary. A combined celestial- 

inertial navigation system would appear to be most suitable 

for this application, Of course. it may be possible and de- 

sirable to incorporate earth-based tracking information from 

time to time in order to further improve navigational accuracy, 

This question will not, however, be considered in the present 

study, 

The actual configuration of a celestial-inertial sys- 

tem would depend on such factors as basic sensor accuracy, 

tolerable guidance accuracy, mechanization and reliability con- 

siderations, and whether the misslon is manned or unmanned, 

The hybrid system concept might lie somewhere between the 

"simple" extremes (1) an lnertlally-aided celestial system 

wherein a body mounted accelerometer 1s used primarily to moni- 

tor thrust acceleration, and (2) a celestially-aided inertial 

system wherein stellar references are used to erect the inertial 

measurement unit and compensate for gyro drift, More realisti- 

cally, the potential of both celestial and inertial navigation 

techniques would be used to full advantage, This latter ap- 

proach is followed in the present study, where both types of 

information are combined to yield a statistically optimal 

navigation procedure. 
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3. FOFUWLATION OF THE NAVIGATION CONCEPT 

The previous discussion has given a qualitative argument 

for considering a celestial-inertial navigation concept for low- 

thrust space flight and has described the basic information 

processes involved, In this section we consider the mathemati- 

cal formulation and analysis of this concept, first in terms of 

the individual processes and error models. and then in terms of 

how the different types of information are combined to yield a 

statistically optimal estimate of the trajectory state, 

3,l Traiectorv Kinematics 

Motion of a space vehicle is determined by its initial 

position and velocity vectors, E and J+ the acceleration 

g@,t) due to the gravitational potential field present, and - 

the thrust acceleration a(t) imparted by the propulsion system, 

The differential equations of motion may be expressed quite 

generally as 

(4) 

The position and velocity components expressed in a fixed 

Cartesian coordinate frame centered at some appropriate point 

are defined 
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To be somewhat more specific, if the gravitational potential 

field is primarily due to the Sun, the gravitational accelera- 

tion is 

(6) 

Here, . the coordinate system is centered at the sun having a 

gravitational constant psO 

As expressed by the set of six first-order differen- 

tial equations, (4), the state variables of motion are identi- 

fied with the six quantities (X,Y,Z,k.G,i!, In some cases the 

thrust acceleration may be expressed as an explicit function 

of the state variables, but more likely will be given as a 

function of time, Actually, this is a question of the trajec- 

tory computation and guidance procedure which is of no immediate 

concern here, Since the possibilities in this area are virtu-, 

ally unlimited. we would like to divorce the navigation problem 

from the trajectory control problem, at least in principle, 

For our purposes, then, we will consider a(t) to be the control 

variable. subject to measurement, but otherwise unspecified in 

functional form, 

The trajectory kinematics, being nonlinear, will re- 

quire modification in order to be easily incorporated in the 

linear navigation theory to be described, Following standard 
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practice, the equations of motion will be linearized about a 

nominal or reference trajectory. This does not imply, however, 

that the reference trajectory need be fixed a priori. Rather, 

the reference trajectory could be recomputed at repetitive 

intervals taking into account the conditions of actual flight. 

In this way, it is possible to extend the range of validity of 

the linearization procedure. 

3.2 Inertial Measurements and-Errors 

Figure 1 shows a block diagram representation of a 

space stabilized , pure inertial system in standard form, The 

system is said to be dynamically exact in that the navigational 

outputs are error free for all dynamic conditions, i,e.? there 

are no instrumentation or initial condition errors, Gyroscopic 

references establish the attitude of the three mutually orthog- 

onal accelerometers in a known inertial coordinate frame. Iner- 

tial velocity is obtained by integrating the summation of thrust 

and gravitational acceleration, and a second integration yields 

position. The feedback loop, assumed instantaneous and exact, 

illustrates the functional dependence of gravitational accelera- 

tion on position, 

The standard form of the system is adopted here so as 

to avoid any detailed consideration of how the inertially fixed 

frame is actually implemented in practice. In this regard, the 

two possibilities are the gimballed platform system and the 

strapdown system. In the well-known gimballed system, a 
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space-stabilized reference frame is physically achieved by a 

configuration of gimbals, The strapdown system creates an 

inertially fixed frame artificially by means of a computer. 

Here, the inertial measurement components are fixed to the 

vehicle frame, On the basis of rate measurements performed 

by the body-fixed gyros, the relationship between the vehicle 

frame and a desired inertial frame can be found, The computer 

then transforms the measured accelerations into the inertial 

frame. A discussion of the relative advantages and disadvan- 

tages of each system is beyond the scope of the present study, 

We simply note that, in the absence of significant computation 

errors, each system can be represented in principal by the 

standard form of Figure 1, Furthermore, the discussion of 

inertial measurement errors given below is broadly applicable 

to either system., 

Aside from initial condition and computational errors, 

inaccuracy of pure inertial navigation is due to imprecise 

knowledge of the thrust acceleration vector, Errors in the 

measurement of this vector arise from (1) accelerometer errors 

EaY and (2) inertial platform misalignment y0 For convenience? 

we use the term "platform misalignment" to denote any angular 

displacements or uncertainties of the instrumented (measure- 

ment) inertial axes relative to the reference (computational) 

inertial axes, Even if the accelerometers were perfect, this 

misalignment would cause erroneous cross-coupling of the ac- 

celeration components, 
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Assuming that the platform misalignment can be repre- 

sented by small angle rotations (Y,,Y,,Y,)? the total error 

in the acceleration measurement is expressed as 

% - a = AzJ 

= 
'a +axY 

= La + flu 

where the coefficient matrix /I has the elements 

A= 

The subscript m will be used to denote measured quantities. 

When the above errors are included, the information 

available from the inertial system may be written 

.O 

R = g(R ,t) + 2 + 'a + n'p -m --m 

where 

s= R + AR 

g(B&t) = g&t) + ng 

(7) 

(8) 

(9) 

Assuming that it is possible to make the linear approximation 

(10) 
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the propagation of inertial system errors may be obtained from 

the differential equations 

Gi = ny (11) 

A$ = GGE+ga +a (12) 

The (3 x 3) coefficient matrices G and fl are implicit functions 

of time and are to be evaluated about some nominal conditions, 

In the case of a pre-flight error analysis, these quantities 

may be evaluated along the pre-specified reference trajectory, 

B*(t) and a*(t) O Here, it is assumed that the differences 

@m - FJ*) and (_R - FJ*) are sufficiently small so as to vali- 

date the linear approximation. In the case of an in-flight 

error analysis, G and /! should properly be evaluated about the 

estimated trajectory, R(t) and G(t). 

Figure (21 illustrates the inertial system error anal- 

ysis in block diagram form, The left-hand portion of the 

figure accounts for the dynamics of platform misalignment, 

The simplifying assumption is made that the rate of change of 

platform misalignment is due to gyro drift E 
-4' i,e,, 

t -1 
% (13) 

Apart from initial condition errors9 the accelerometer 

error and gyro drift appear as forcing functions for the posi- 

tion and velocity error responses. For error analysis purposes, 

2, and 1g are best characterized in terms of their statistical 
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properties. That is, these errors are considered to be random 

variables either from an ensemble average or time-varying point 

of view, For instance, it has become standard practice in 

error analyses of inertial systems to model these errors as 

deterministic functions of acceleration with random coefficients, 

-go9 

E a = k0 + kla + higher order terms 

Here, k0 and kl are the bias and linear scale factor uncer- 

tanties of an accelerometer which remain after calibration 

procedures. Normally, k0 and kl are considered zero-mean 

random constants with variances (standard deviations) deter- 

mined by averaging test results over an ensemble of similar 

components, For high acceleration launch vehicle applications, 

it is known that the linear scale factor uncertainty has a 

significant contribution.to the overall error response. This 

is not expected, however, for low acceleration applications, 

To illustrate this point, suppose an accelerometer designed 

for low-thrust application has a bias uncertainty of 10S7g and 

a 0.01 percent linearity, Taking 10m4g as a typical accelera- 

tion level, the acceleration-dependent error is seen to be 

l/lOth that of the bias error and, thus, could be neglected. 

A similar argument could be made for neglecting "g-sensitive" 

gyro drift, It is realized, of course, that this extrapolation 

or analogy between high and low acceleration applications may 

not be quite valid, In particular, low-threshold accelerometers 
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are only in the laboratory development stage and little is 

known of their error characteristics, It is likely that such 

devices will have little resemblance to present day accelero- 

meters in terms of principle of operation and design, Never- 

theless, it seems quite reasonable to assume that the accelero- 

meter error and gyro drift will not be g-sensitive, 

We are still left with the task of modeling the sta- 

tistical characteristics of the instrumentation errors0 This 

task is made difficult by the fact that virtually no statisti- 

cal test data is available for advanced inertial components, 

In the face of little concrete information to go on? the 

following approach is taken with respect to both accelerometer 

and gyro errors, 

First, it is assumed that the instrumentation error 

may consist of several additive components, each statistically 

independent,, Each of these components could be identified 

with a different time-varying noise characteristic, e,g,, high 

and low-frequency random noise, Second, it is assumed that 

each error component may be described by a zero-meang station- 

ary random process having an exponential correlation function, 

iOeO, 

E [ Ei (t) L(iz + '6) 1 = Q- ('G) 1 
-Oil~l 

=- o2 e i 

(14) 
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Here, Qi (0) = u; is the mean-squared value or variance of the 

i th error component and tii is the reciprocal of the correla- 

tion time, i.e., wi = l/~~. This type of random process is 

commonly termed "band-limited" noise since it may be generated 

by passing "white" noise of power spectral density + aToi 

through a simple lag filter, G(s) = 1 
Sfco. a The power 

1 
spectral density of the "band-limited" noise is 

Pi(W) = A-2 
- uqw 

a2 + co2 ; 
(15) 

The form of (15) suggests a simplifying approximation 

when the noise frequency is significantly higher than the 

characteristic frequency of the system response (or, higher 

than the sampling rate of the system response). The high- 

frequency "band-limited" noise could be approximated by a 

"white" 02h noise process with spectral density - 
n% l 

For anal- 

ysis purposes, then, the high-frequency noise could be repre- 

sented by the correlation function 

(16) 

where S(T) is the Eirac delta (unit impulse) function. This 

approximation, while introducing negligible error in the re- 

sults, greatly simplifies the numerical computation procedure, 
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3.3 Celestial Measurements and Errors 

Tk basic geometric observables of celestial naviga- 

tion are space angles measured from the vehicle to selected 

celestial targets whose positions at the time of measurement 

are'assumed to be known. These targets include the distant 

stars and the "near" bodies of the solar system (sun, planets, 

moons). The stars, being essentially infinitely far away and 

fixed in space, p rovide the directional references for deter- 

mining vehicle position and attitude. The near bodies provide 

the finite distance references which 

the position fix. 

In regard to position fixes, 

are needed to complete 

the information contained 

in a single space angle measurement may be expressed in the 

general form 

'rn = 0 (,R) (17) 

Here, 0(E) is the geometric function which relates the position 

coordinates to the observable. Three independent space angle 

measurements suffice to determine I& Consider, for the moment, 

the zffect of measurement errors on position determination 

without regard to the specific observation policy. Assuming 

small errors, A@ = 8, - 0, we have from (17) 

A0 =heAB 

= hT A_R 
(18) 
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where Ir T is the row vector of partials 

hT = i% 1 = b-43 i-8 % I - (19) 

For three simultaneous observations, the error in determining 

position is found by inversion 

A_R = H-'AQ (20). 

where H is the (3 x 3 ) matrix associated with the observation 

policy 

H = 

-ae, ae, ae,- 
ax ay az 

ae, ae, ae, - - - 
ax ay az 

ae3 ae3 ae3 - - - 
ax ay az 

(21) 

The necessity for independent observations is reflected in 

equation (20). If the observations were not independent, the 

determinant of H would be zero and, hence, H-l would "blow up". 

In fact, the smaller the value of [Hi, the greater is the 

sensitivity to measurement errors. Since ]H] may be expressed 

as the triple scalar product, hl l (h, x ha), the desire to 

minimize the error sensitivity requires that this product be 

as large as possible. Hence, the following important conclu- 

sion may be drawn. If the observation policy could be chosen 

arbitrarily, it should be chosen such that the geometry vectors 

hl,h2, and h 3 are as large andmutually perpendicular as possible. 
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Inasmuch as the number of celestial bodies potentially 

available for observation is quite large, the various possi- 

bilities and combinations of angular measurements are virtually 

unlimited. Of course, not all celestial bodies are observable 

from a practical standpoint nor are they all equally useful in 

providing accurate navigational information. The choice of 

which set of observations to use in a given situation would 

depend upon such factors as (1) the effect of sensor errors on 

the accuracy of position determination, (2) the type of optical 

sensor employed, e.g., sextant or theodolite, and (3) the 

viewing constraints imposed by the vehicle structure and orien- 

tation requirements, The implication of these factors is 

largely a question of mission application and hardware design, 

and, as such, is beyond the scope of this research study. For 

the purpose of this study, we shall restrict our attention to 

planetary and stellar observations and consider two different 

types of space angle measurements: 

1. Theodolite--Lvpe measurements - the observable 

here is the planet line-of-sight as measured by 

the latitude (00 and longitude (fi> of the planet 

as seen from the vehicle. Possible implementa- 

tion would consist of a gimballed theodolite or 

planet-tracker mounted integrally with the iner- 

tial measurement unit. When the planet is cen- 

tered in the field of view, the two gimbal angles 

are a measure of o( and p. 
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2. Sextant-tvpe measurements - the observable here 

is the included angle (8) between a star and the 

planet, 

The geometry of these two measurement types is shown in Fig- 

ure 3 O 

For the theodolite-type measurement, the equations 

relating vehicle position and the observables are 

sin o( 

sin p 

cos p 

ITI SE 
R 

VP 
(22) 

= 
T7P 

(xZp + Y;p)1’2 

(23) 

= 
xvP 

(xZp + Y;p)1’2 

where R 
YP 

is the vector from the vehicle to the observed planet, 

i,e., 

X X 
VP = P -x 7 x --t Y,Z (24) 

The planet position R 
-P 

is assumed known. The elements of the 

geometry vectors & and h 
P 

are found to be 
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hp = 

aoc 
ax 

aoc 

.I 

ay 

aoc 
az 

= 

We can now be more specific regarding the question of error 

- 
sin@ cosB 

R 
VP 

sin@ sir43 
R 

VP 

- co& 
R 

VP 

sinB 
R co6 

VP 

(25) 

(26) 

sensitivity. Suppose we measure the line-of-sight to two 

different planets, P1 and P2, obtaining the set of data (til,pl) 

and (N2 ,B2). Since we have one extra piece of information, 

suppose, for the moment, that we neglect the second latitude 

measurement ea. From equations (25) and (261, we note that 
(1) 

k and "p(l) are always orthogonal vectors, and that their 

cross product is 

(1) k 
xhw’ (pqix +(=yy)Ly+(-ta;41 )I, 

-P 2 R R 
VP1 VP1 VP& 
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The triple scalar product is then found to be 

1 sin(pl - p2) = 
R 2R 

VP1 VP2 
costi 

For vehicles traveling in or near the ecliptic plane, @I and 

ti2 will be close to zero. Hence, the triple scalar product 

would be largest (minimum error sensitivity) if the two ob- 

served planets have a 90° separation as seen from the vehicle, 

and are as close to the vehicle as possible, Since this con- 

dition would rarely be satisfied in an actual mission, a trade- 

off between angular and distance separation would be necessary 

in choosing the best planets to observe. 

In the case of sextant-type measurements, the equation 

.relating vehicle position and the observable is 

cOse = 
$, 0 is 

R (27) 
VP 

where i 
-S 

is a unit vector in the direction of the star having 

known direction components., The geometry vector in this case 

is 

he = Rvplsine 
%P 

case 

is - Rvp > (28) 

Suppose the observation policy consists of measuring the included 

angles between a planet and two stars and the included angle be- 

tween a second planet and a star. It is observed from (28) that 
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each h -0 lies in the plane of the measurement, is perpendicular 

to the vehicle-planet line, and has a magnitude equal to l/R 
Pv' 

Again, for vehicles traveling in or near the ecliptic plane, 

the sufficient criteria for minimum error sensitivity are 

(1) close-by planets 90° apart as seen from the vehicle, and 

(2) two of the three stars should lie near the ecliptic plane 

and the third should lie near the ecliptic pole. 

For either theodolite or sextant-type measurements, it 

is assumed that the sensor error (noise) consists of two addi- 

tive components, one random and the other a bias, that is, 

n (tk) = nrttk) + "b (29) 

The random component is assumed to have zero mean, variance 

+tk) ) and be uncorrelated from one observation to the next, 

i.e., 

E[ nr (tk) ] = 0 

E[nF(t,)] = oZ,k,) 

E [ n, (tk) nr (tk+i )]= 0 

(30) 

The assumption of uncorrelated random errors would appear to 

be justified for distrete-time observations sufficiently far 

apart, say 1 or 2 days, The bias component is considered a 

constant for a given sensor, but whose exact value after 
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calibration is uncertain. Statistics of this uncertainty on an 

ensemble basis are taken as 

Enb = 0 L I 
(31) 

The relationship between the angular measurement error: 

Ae, and the sensor noise, n, should be clarified at this point. 

For sextant measurements, the relationship is quite simple as 

shown in the sketch below 

here, 

ne = ‘rnDexn (32) 

For theodolite measurements, the physical connection between 

the theodolite and the inertial measurement unit needs to be 

taken into account as shown below 
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In this case, the platform misalignment r contributes to the 

total measurement error. 

A0 = n + [$$]I 

(33) 

The elements of he, are readily found to be 

I& = (-sir@ 7 c-P 7 0) (34) 

h& = (cosptan@, sinptan@, -1) (35) 

3.4 Stellar-Monitored Inertial Svstem 

As previously mentioned, the effect of uncompensated 

gyro drift on the accuracy of a totally inertial navigation 

system could prove serious over the long operational times of 

low-thrust vehicles. In this section, we will examine the 

question of using external references, namely the stars, to 

measure and correct platform misalignment resulting from gyro 

drift, Again, we use the term "platform misalignment" in its 

general sense to mean either the physical displacement or 

computational uncertainty of the instrumented inertial axes 

relative to the reference inertial axes, 

Platform Attitude Measurement 

Since a star can be considered fixed in inertial space, 

the line-of-sight to the star as measured by a gimballed star 
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tracker integral with the inertial measurement unit provides 

information concerning platform attitude. In operation, of 

course, it is desired that the stellar monitor measure the 

angular deviation of the actual line-of-sight from the nominal 

computed direction: this quantity being a function of the plat- 

form misalignment. A single star tracker can only measure 

error components in a plane normal to the line-of-sight. 

Therefore, in order to determine the total misalignment angleI, 

it is necessary to use either two stellar devices tracking 

different stars simultaneously, or one stellar device alter- 

nately tracking different stars,, 

Several ways to formulate and mechanize the stellar 

monitoring procedure are possiblee For the purpose of illus- 

tration, suppose that two star trackers are employed, each 

tracker commanded to point along the nominal direction to the 

respective reference star. Since the platform would not gen- 

erally be in alignment with the nominal inertial axes, the 

stars will not be centered in the field-of-view. Each tracker 

is then rotated in two planes to center the star - this rota- 

tion being measured by the two gimbal angles. The set of 

gimbal angles may then be used to compute the platform misalign- 

ment, 

To illustrate how this procedure may be formulated, 

let (a;, a$, a$) and (b;t, bz, bg) denote the known direction 

cosine sets of the two stars in the reference inertial frame 
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(X,Y,Z) ) and let (e1, @J  and (e2, ~2) denote the measured 

gimbal angle sets of the two star trackers,, Here, small gimbal 

angles are assumed as the tracker rotation is referenced to the 

nominal pointing direction. Choosing the x-axis of each tracker 

to be the line-of-sight axis, the nominal orientation of each 

tracker with respect to the platform is given by the direction 

cosine matrices 

Cl = 

- 
* * * 

al a2 a3 

a21 a22 a23 

a31 a32 a33 1 ; c, = * * 
bl b2 

* 
b3 

b2 1 b22 b2 

b31 b32 b3 

(36) 

All the direction cosines are to be considered known quantities 

whose values depend upon the particular mechanization of the 

star trackers. W ith 

minant equations may 

yX 

a2 1 

* 
al 

yX 

a31 

a: 

the above definitions, a set of 2 deter- 

be derived for each star tracker, e,g., 

yY 

a22 

* 
a2 

yY 

a32 

* 
a2 

yZ 

a23 

* 
a3 

= el (37) 

YZ 

a33 

ali 

= 01 (38) 
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These equations express the projection of 1 in the plane normal 

to the star direction, The three components of 1 may then be 

found from the complete set of 4 gimbal angle equations. In 

the ideal situation of no instrumentation errors, one of these 

equations is linearly dependent and, hence, could be eliminated 

from the computation, 'When errors are considered, the redundant 

information could be used to improve the accuracy of Y determi- - 

nation. 

As an example of a somewhat trivial computation, if the 

two stars and the stellar monitor mechanization were chosen 

such that 

then the components of platform misalignment are simply 

Yy = -e2 

Y, = e1 

Platform Attitude Correction 

With a measure of the platform misalignment determined 

by the stellar monitor, it is possible to apply corrections to 

the platform in order to compensate for gyro drift. Assuming 
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a proportional plus integral correction procedure (Ref, lo), 

Equation (13) is modified to read 

i = Lg- Kp!r+ a)--KI St q+ Lwt 
0 

(39) 

where K and K 
P 

I are gain constants and '1 is the measurement - 

error introduced by the stellar monitor. In reality, the mea- 

surement and correction of platform attitude may be described 

more accurately by a sampled-data process since the stellar 

information would likely be obtained at discrete intervals and 

the correction would likely be performed by a digital computer. 

For the puspose of simplicity, however, we will ignore the 

sampled-data aspects of the system, Furthermore, we will only 

consider a single-axis model of the correction process, thereby 

ignoring the cros s-coupling which would likely exist in the 

stellar monitor error components, These assumptions are felt 

to be justified for the purpose of the following analysis, 

which is to describe the relative efffects of the gyro and 

stellar monitor errors on the corrected platform attitude. 

The single-axis closed-loop correction process of (3a) 

is shown below in block diagram form 
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The output response of this system may be expressed in trans- 

form notation (initial conditions are taken as zero) 

(41) 

Y(S) = S EgW - 
KS+KI 

S2+ KPS + K 
s 

2 

+ KPS + K 
'1 (S) (40) 

I I 

If the input quantities, E 
g 

and 7. are both constant, the 

steady-state response is 

Y ss = - '1 

constant input 

Hence, the proportional plus integral correction eliminates 

the unbounded effect of gyro drift on platform misalignment, 

substituting in its place the relatively small stellar monitor 

error. However, the effect of random inputs must also be 

studied. 

For the purpose of the random input analysis, it will 

be assumed that both gyro drift and stellar monitor errors 

are adequately represented by "band-limited" white noise 

(exponential correlation function), i.e.? 

P(w) = ,i + .Q2 

or 

cJ2E 
AIT 

@J ('G) = 

2 

*cl 
and G "1 will denote the 

(42 

variances of the random gyro drift 

and stellar monitor error, respectively, while Q 
9 and "'I wi11 
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denote the reciprocals of the gyro and stellar monitor corre- 

lation time constants, respectively. Expressing the platform 

"torquing!' gains in terms of a natural frequency o. and a 

damping ratio < 

K 
P 

= 2<C!Jo 

KI = m2 
0 

the characteristic equation of the system may be written 

S2+KpS+KI = (S + aoo) (S + ho) 

where 

(43) 

(44) 

(45) 

Since the gyro drift and stellar monitor error may be 

assumed uncorrelated with each other, the correlation function 

of Y may be written as the sum of two independent terms 

Qy (?;I = oygw + cDyq ('6) (46) 

The contributions of gyro drift and stellar monitor error are 

found to be 
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@yg(T) = CJ; 
I 

aQ 
9 -ao,l4 

oo(b2-a2) (a20z-$) ' 

+ b*g -hoI ‘61 
mo(a2-b2) (b2az-Qi) ' 

E 

-Qg Id 
(a2~~-Q~) (b2$-Qi) 

Qqwo[l-a+b) 2 1 - 
+ b(b2-a2)(b2wg-Q:) 

E 

+A01 ‘61 

(47) 

(48) 

+ 
OZ[ Up (a+b)2Q2] 

E 
-Qrl Id 

(a2wz-Qt) (b20z-i$) 

These expressions apply to damping ratios less than or greater 

than unity, hence, a and b may be complex or real, For the 
purpose of this analysis, we will consider a damping ratio very 

near to unity, i.e., 

a k 1+n 

b =z 1 -A 
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where A << 1. Neglecting terms of order (A) and higher, 

equations (47) and (48) may be closely approximated by 

+ 1 
(50) 

Examination of (49) and (50) suggests that o. should be 

as large as possible in order to minimize the mean-squared 

platform misalignment. In the limit, as o. becomes infinite, 

we have 

lim @Y(T) = C? E 
7 (51) 

which is equivalent to perfect tracking of the stellar monitor 

by the platform as was the case for constant error inputs. 

Again, the effect of gyro drift has been eliminated. Although 

infinite loop gains are impractical, the result depicted by 

(51) could be approached very closely by an appropriate choice 

of w 
0. 

To illustrate this, suppose that wo>>Q 
cl and wo>>Q . 

'1 
Then, the mean-squared value of platform misalignment could be 
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approximated by 

2 
% = @ys (0) + ayq (0) 

a20 =-+a 
fpl 2 +2 &l) 

003 
Co 0 

(52) 

As a numerical example, we assume the values 

Gyro drift: 

% = 10-8 rad/sec (0.002 O/hr) 

Qg = (3600)-l rad/sec 

Stellar Monitor: 

arl 
= 5 x lO-5 rad (10 set arc) 

Qrl = (3600)-l rad/sec 

Platform frequency: 

0 0 
= (360)-l rad/sec 

Substituting into (52), we have 

CT2 
Y 

= (0.013 + 36.2) x 10-l' 

*Y 
= 6 x 10B5 rad 

The gyro drift is seen to contribute a negligible amount to the 

over-all error which is only slightly greater than the stellar 

monitor error. For this example, the correlation function of 
y could be closely approximated by 

lz!- = 36 X loel'e- 3600 
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I - 

As a result of the above analysis, we will make the 

simplifying assumption that the corrected platform misalignment 

can be adequately represented (for the purpose of trajectory 

estimation) by the stellar monitor error. We further assume 

that the stellar monitor error consists of both a low-frequency 

and high-frequency component, each statistically independent, 

and each exponentially correlated. We have, then, for a single 

axis 

'y (t) = '1 it) = q&(t) + 'lh (t) 

-M- 

3.5 Linearized Naviaation Model 

Having discussed the celestial-inertial navigation 

concept in terms of its separate parts, we may now consider 

the mathematical formulation of the complete systems concept 

as it pertains to estimating the trajectory state. The optimal 

estimation procedure to be described in the next section re- 

quires that the state variables of the system, and this includes 

all instrumentation errors that .are time-correlated, be repre- 

sented in the form of a linear dynamical model excited by allwhite 

noise" input process. In this section, then, we present the 
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set of augmented state equations and celestial observation 

equations which describe this model. 

Consider first the vehicle motion equations which have 

been given in the general nonlinear form by equation (4). 

Suppose that a solution of these equations, corresponding to 

a pre-specified thrust acceleration program and satisfying 

prescribed boundary conditions, has been obtained and is termed 

the reference solution. Under the assumption that all perturb- 

ing conditions are sufficiently small so that the actual tra- 

jectory does not deviate significantly from the reference tra- 

jectory, it is possible and convenient to describe the trajectroy 

state in terms of linear perturbation equations. Thus, the 

linearized differential equations of motion are written 

s (t) = v(t) (55) 

4 (t) = G(t)x(t) + z(t) (56) 

where we define 

r 

L 

v 

z 

Here R* V* ?-Y-Y 

= 

‘E - _R* 

1 - y* 

a - a* & 

and a* are the known position, velocity, and 

(57) 

acceleration time history as given by the reference solution. 

When the gravitational field present is primarily due to the 

Sun, we have from (6), 
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G= ag c 1 -1 m 

PS 3(3X2-R2) CL, 
R5 3xjl 

CL 
s 3XY 
R5 

!k 
R5 3xz 

P P 
-$ (3Y2-R2) -$ 3YZ 

KS 
2 3Yz 

hi 

R5 
(3Z2-R' 

- 

9 

(58) 

L 

where the partial derivative elements are to be evaluated at 

points along the reference trajectory. 

Introducing the inertial measurement information, we 

have from (7) and (57) 

a(t)-a"(t) = [qt, - a*(t)] - As(t) 
(59) 

Z z&l - LaW-Ak)YW 

Now, with reference to our previous discussion, the accelero- 

meter error E -a and the platform misalignment 1 are each assumed 

to be made up of two independent additive components, one due 

to "low-frequency" random noise and the other due to relatively 

"high-frequency" random noise. 

-Es(t) = q,(t) + EhW (60) 

-I = l-p + Ip (53) 
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Substituting from (59), and (60) and (53)? equation (56) is 

modified to read 

G(t) = G(t)r-(t) + G(t) + L&(t) + Lb(t) 

+ Ak)q$t) + I\ (t) l+,(t) 
(61) 

In the case of error sources which have correlated 

noise characteristics, the optimal estimation procedure re- 

quires that these errors be estimated along with the position 

and velocity state vectors. Regarding the low-frequency error 

components in (61), the fact that we have assumed stationary, 

exponentially-correlated statistics allows the random error 

model to be described by constant coefficient, linear dyna- 

mlcal equations of the form 

i&(t) = L&t(t) + 21 (t) 

k(t) = L,Q+) + g2 (t) 

where L1 and L2 are (3 x 3) diagonal matrices, 

1 L, z--o I 
w 

(62) 

(63) 

(64) 

(65) 
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and g1 and u2 are independent, zero-mean "white noise" inputs 

having covariance matrices 

E[ul (t$(t) 1= U, = 20:cL *I (66) 
w 

2 

E[z2 (t)+t)]= U = Q l I 
2 

38 
(67) 

The quantities (CT&, T~~) and (a2 
G -?a 

) are the variances and 

correlation times of the low-frequency components of the ac- 

celerometer and stellar monitor errors, respectively. 

Although the high-frequency components of these errors 

are also considered to be exponentially-correlated, if the 

respective correlation times are significantly smaller than 

the sampling interval of the celestial position fixes, we may 

make the simplifying assumption that these components can be 

\ represented as "white noise" (see eq. (16) ). That is, 

.,(t) = 23 (t) 

$.$) = !?!4 (t) 

(68) 

(69) 

where u3 and u4 are independent, zero-mean "white noise" inputs 

having covariance matrices 

E[g3 (t&t)] = u3 = 2cFh -Lab l 1  (70) 

(71) 

I- 
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The final state equation to be considered is due to 

the bias-type celestial observation error. This may be ex- 

pressed simply as 

, 
"b =o (72) 

The dimension of II~ is 2 in the case of a theodolite-type 

measurement and 1 in the case of a sextant-type measurement. 

For the purpose of notational convenience, we define 

an augmented state vector 

and the "white noise" input vector 

u = 

r 

Ul 

u2 

u3 

u4 

(73) 

(74) 
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The augmented set of differential equations may then be ex- 

pressed as 

i(t) = A(t)x(t) + B(t)u(t) + J+,(t) (75) 

where the coefficient matrices in partitioned form are 

A= 0 

B = 

D= 

0 

G 

0 

0 

I 

0 

0 

0 

0 

0 

0 

0 

I 

0 

0 

kT1 

Li 

0 

0 

0 

kT1 
0 

0 

0 

0 

A 

0 

L2 

0 

0 

0 (76) 

0 

0 

(77) 

(78) 
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The factor kI, in (76) and (77) is introduced to 

assumption that acceleration measurements (and, 

account for the 

hence, accelero- 

meter errors) are not in effect during nominal coast periods. 

This factor is then defined as 

t 

1 if a* # 0 
k, = 

0 if a* = 0 

Employing state transition concepts, the solution of 

(76) can be written in the form 

t 
x(t) = Wt,to)x(to) + j- @>(t~7;)B(~)uh)dcG 

tO 

t 

+ 
s 

CP(t?s)DG('C)& 
tO 

where @(t,to) is the transition matrix of the augmented 

whose solution is obtained from the matrix differential 

tion 

&,to) = A(t)a(t,to) 

system 

equa- 

(80) 

with initial conditions @(to,to) = I. An important property of 

this matrix is 

m+-L) = Q(t,toP(to’T) 

(81) 
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If 5-1 and t--k denote any two successive time instants 

in the interval (t 0 '-tf ) then the generalized state transition 

equation may be written 

where, for notational convenience, we define 

tk 
_q(t && = j- @ (tk,'6)B(T)u('6)d'G 

tk-l 

"k 
*s(tk:tk-l 1 =Jwt, 

+ 
,-c)Dz++)dT 

'k-1 

(83) 

(84) 

In (851, Ah and Av --m are the measured changes in position and 

velocity due to the thrust acceleration acting in the interval 

(tk-l Y\’ l 

To complete the formulation of the navigation model, 

it is necessary to relate the space angle observations to the 

state variables. With reference to the discussion of celestial 

-49- 



measurements and errors presented in Section 3.3, the first- 

order difference between the measured observation vector Qm 

and the reference value Q* may be derived as a linear function 

of x plus additive terms due to the celestial sensor and 

stellar monitor random errors. This may be expressed as 

3-f-l = e-Q* 
(85) = Mx+n 

where the partitioned form of M is 

M = [ H i 0 i 0 i -H1 i I] (86) 

Recall that we have considered the possibility of planetary 

,observations using either a theodolite or a sextant. For 

these two cases we have: 

Theodolite-tvoe measurement 

H = ha I 
T 

"P 

1 T 
H1 = %Y “pY 

II = -H1u, + % 

Here, H and HI are each (2 x 3) matrices whose elements are 

given by equations (25), (26), (34) and (35). % is a 2-vector 

consisting of the random errors (attributed to the theodolite 

(87) 

(88) 

(89) 
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device) in measuring the planetary latitude and longitude 

angles @  and 3. The errors attributed to the platform mis- 

alignment (or stellar monitor error) are accounted for by the 

Hi matrix. 

Sextant-tvne measurement 

T 
H = he (90) 

I-31 = 0 

11 = n r 

(91) 

(92) 

Here, H is a (1 x 2) matrix or row vector whose elements may 

be found from equation (28), and nr is the random error in 

measuring the star-planet included angle 8. 

The celestial-inertial navigation model described 

above may be summarized in terms of its input-output relation- 

ships by the following block diagram 

-51- 

I\ A 



Information obtained by direct measurement is available to the 

system at the input through the continuous inertial accelera- 

tion measurements s(t), and at the output through the discrete- 

time celestial angle measurements xm(tk). The input u(t) is a 

"white noise" random process with zero mean and covariance 

matrix 

u = Eru (t)uT (t) 1 

= 

L -I 

Ul 0 0 0 

0 Uz 0 0 

0 0 u3 0 

0 0 0 u, 

The output measurement error n(tk) 

(93) 

is a zero-mean random vari- 

able uncorrelated from one observation to the next and has a 

covariance matrix (a scalar in the case of sextant measurements) 

N(tk) = E[E ttkhT (t&j (94) 

Finally, the initial state x(t,) is a zero-mean random vector 

with a covariance matrix 

-52- 



, Pk,) = E[x(to)xT(to)] 

II 

P 

P 

I 
P 0 rr rv I 

I 
T I 

P rv vv 1 0 
---------- -I 

0 O pEE 

0 0 0 

0 0 0 

0 

0 

0 

P 
rlrl 

0 

0 

0 

0 

0 

'bb t=t 
0 

(95) 

The upper (6 x 6) covariance matrix in (95) is associated with 

the initial position and velocity deviations from the reference 

trajectory. The other covariance matrices are associated with 

the time-correlated instrumentation errors and are given by 

P 
EE (to) 

Pbb(to) 

(96) 

(97) 

(98) 
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Finally, the covariance of q(tk, Sal), which has been defined - 

by (831, can be computed from the integral equation 

Q(tk:tkwl ) = E[~(t,&-l) 3T (+ tk-l)] 

s 

tk 
= ~(tk,~)B(~)UBT(~)~T(tk,~)d" 

tk-l 
(99) 

3.6 Ontimal State Estimation 

Having described the celestial-inertial navigation 

system in terms of its explicit dynamical model and probabilis- 

tic aspects, we now consider the problem of state estimation. 

Since the current state of the system cannot be determined 

precisely, we seek a method of processing the available ob- 

.servational data so that the "best" estimate of the state is 

obtained, The meaning of "best" in this context is related to 

the particular optimality criterion chosen. Quite generally, 

one would like to minimize some function of the error in the 

estimate. Specifically, one would like to choose an error 

function which is physically meaningful and yet leads to an 

easily implemented estimation procedure, e.g., linear processing 

of the observational data. 

It has been shown by several investigators of the 

general estimationproblem that the unrestricted optimal esti- 

mate of a linear system subject to Gaussian statistics is of a 

linear form. In the event that Gaussian statistics cannot be 
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assumed, the linear estimate is still optimal if the criterion 

chosen is to minimize the expected value of a quadratic error 

function. This is the vector equivalent of the familiar mean- 

squared error criterion. Given this general result, Kalman 

proceeded to treat the estimation problem from a dynamic 

filtering point of view (Ref. 11, The Kalman filter theory 

has been applied extensively to the space navigation problem, 

with particular emphasis placed on "free-fall" trajectories 

and output measurements related to the system state through 

linear algebraic equations (Refs, 2?3,4,5). The present pro- 

blem differs from these applications mainly in that we are 

dealing with thrusted trajectories and measurements of the 

system input as well as its output, Nevertheless, the basic 

Kalman filter theory is applicable to the present problem and 

Will? therefore, be utilized. 

The notation used in the estimation equations is 

defined as follows: 

tk'tk-l successive time instants at which celestial 
observations are obtained 

2 '(tk) estimate of x(t ) prior to including the 
current observa P ion 

estimate Of x(tk) after including the cur- 
rent observation 

p ($1 covar&ance matrix of the error in the esti- 
mate x (t,) = &(tk) - 2 (tk) , E E (tk)"xT ctki, 

K $1 optimal filter matrix for weighting the 
current observation 
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With the above definitions, the estimation procedure 

may be described by the following recursion equations: 

Extrapolated Estimate 

i&k) = ~(t,&k~l)~(tk-l) + @$&&& 
Extrapolated Error Covariance 

/ 
p ($1 = akk$k-l )' (tk-l )DT(tk:tk-l) + Q(tk+kBl) 

Optimal Filter 
-1 

K (tk) = P'(tk)MT(tk)[M(tk)p/(tk)MT(tk) + N(tk)] 

New Estimate 

% (tk) = &,, + K (t,) ,jm kk) - M(t&&k) 1 2 

New Error Covariance 

P kk) = PLk) - K(tk)M(tk)P'(tk) 

(100) 

(101) 

(102) 

(103) 

(104) 

In the linear estimation equation (1031, the quantity 

M(tk)g;tk) is the estimated value of the observation Ym(tk)? 

this estimate being made just prior to taking the observation, 

This quantity is then compared with the actual data and the 

residual is weighted by the filter K to produce an incremental 

correction to the previous estimate of the state, The new 
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error covariance matrix is computed, and the entire sequential 

estimation procedure is repeated at the next observation time, 

It is noted that, in the interval (tkai , tk), information 

concerning the position and velocity state is obtained through 

the continuous inertial acceleration measurements. This infor- 

mation appears as As(tl,t,& in the discrete-time estimation 

procedure described above. This additive term in (100) is 

the essential difference between "free-fall" trajectory esti- 

mation and thrusted trajectory estimation employing accelera- 

tion measurements. 

If an estimate of the state is desired at points be- 

tween the celestial observation times, it may be obtained from 

the equation (with tk ,I t I tk) 

i(t) = wt,tkJ&J + J t @(t,~)Dz$$)d~ 
tk-l 

(105) 

or7 alternatively, from the differential equation 

& dt = A(t);(t) + D%(t) 

with the initial condition, $( tkml). The 

matrix corresponding to this estimate may 

equation 

(106) 

error covariance 

be computed from the 

(107) 
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or alternatively, from the differential equation 

l?(t) = A(t)P(t) + P(t)AT(t) + B(t)UBT(t) (108) 

with the initial condition, P(\-l). It can be readily shown 

that the covariance matrix of "white noise" effects, Q, can be 

computed from the differential equation 

‘ktk-l ) = A(t)Q(t,tkV1) + Q(t,&)AT(t) + B(t)UBT(t) 

(109) 

with the initial condition, Q(tkSl, %-I) = 0. This is a more 

convenient method of computing Q than was previously given by 

the integral form, equation (99). 

The estimation equations given above may be simplified 

considerably by taking into account the partitioning of the 

state variables as defined in the previous section of this 

report. Appendix B summarizes the partitioned form of the 

estimation equations. 

Although the estimation procedure has been formulated 

under the assumption of linear perturbations about a prespeci- 

fied reference trajectory, this need not be a restriction in 

the actual implementation of the procedure. In fact, if 

linearization is to be employed, it is clear that the correct 

approach would be to linearize about the estimated trajectory 

since this trajectory is, on the average, closer to the actual 

trajectory than is the reference. It is true that the differ- 

ence between the two linearization procedures would not be 
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significant if the actual trajectory deviations from the 

reference remain very small. In many cases this would be so, 

however, the possibility of unexpected large perturbations does 

exist. The navigation system should, therefore, be designed 

to handle this possibility. 

It is readily deduced from the form of the estimation 

equations that the computational procedure could be implemented 

in terms of the original state variables rather than their 

deviations. Thus ) for example, in the case of position we may 

write the estimation equation as 

; (tk) = &it,, + Kr (t,) [hk-k) - k’ ($)I 

where it is seen that the incremental correction is still of 

the linear form. In this case, the filter Kr weights the dif- 

ference between the measured and estimated values of the ob- 

servable space angles rather than their deviations. In computing 

the estimated angle, one would use the nonlinear geometric equa- 

tions relating B and Q, and evaluate this equation at g:t,). 

Similarly, in the time interval between space angle observations, 

position and velocity would be obtained by integrating the non- 

linear equations of motion. Of course, the computation of P, 

M and K still requires the linearization approach, however, the 

evaluation of these matrices would be based on the current best 

estimate of the trajectory. 
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4, DESCRIPTION OF PERFORMANCE ANALYSIS PROGRAM 

It is noted from the previous discussion that the opti- 

mal estimation procedure generates its own performance analysis, 

That is to say, the error covariance matrix P required in the 

computation of the filter matrix K is a measure of the average, 

or ensemble, performance of the system. Specifically, the 

diagonal elements of P represent the mean-square uncertainty 

in estimating the state variables of the system, The solution 

for P, given by the recursion equations (101) 7 (102) and (104), 

is seen to depend upon the initial state uncertainty. the 

transition matrix of the reference trajectory, the observation 

types and schedules, and the instrumentation noise characteris- 

tics, Since these parameters appear in the solution in a fairly 

complex manner, very little could be said about performance 

without a certain amount of numerical experimentation, Accor- 

dingly, a digital computer program was developed to facilitate 

a numerical performance evaluation of the celestial-inertial 

navigation concept. In this section, we describe the main 

features and scope of the performance simulation, 

4:l Reference Trajectories 

Application of the navigation theory is made to the 

midcourse, or heliocentric , phase of low-thrust interplanetary 

missions. The mission trajectory, then, begins with the Earth's 

orbital conditions and terminates at the heliocentric position 

of the target planet. Both rendezvous and fly-by missions are 
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considered. Orbital velocities of the vehicle and planet are 

matched in the case of rendezvous missions. Also considered 

are both variable thrust and constant thrust modes of propulsion, 

For each kind of mission and propulsive mode, the reference tra- 

jectories employed in this study are of an optimal type. That 

1s) for a given target planet, terminal conditions and flight 

time, the thrust program is chosen so as to minimize the re- 

quired propellant expenditure. 

The simulation may be described as a three-dimensional 

performance analysis utilizing two-dimensional reference tra- 

jectories. That is, the reference trajectories are computed 

in the ecliptic plane (X,Y) under the assumption of coplanar 

planetary orbits, however, the state variables of the problem 

include the out-of-plane Z-components, The only reason for 

this simplification in vehicle and planetary motion was the 

availability of the digital computer program needed to gen- 

erate the reference trajectories. This FORTRAN program, made 

available to IITRI by the Lewis Research Center, is restricted 

to coplanar trajectories. It is important to note that, since 

the planets of the solar system lie fairly close to the ecliptic 

plane? the restriction of coplanar heliocentric trajectories 

has only a minor or negligible effect on the results of the 

navigation system performance. 

The Lewis trajectory optimization program is based on 

the indirect method of the variational calculus. Numerical 
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integration is performed by a fourth-order Runge-Kutta routine 

with provision for step size control based on truncation error 

checks. Converged tragectories are obtained by a multi- 

'dimensional Newton-Raphson iteration scheme. No operations 

manual for this computer program exists, however, the mathema- 

tical formulation of the optimization problem has been pub- 

lished (Ref. 9). 

4.2 Celestial Observation Policy 

Space angle measurements for the purpose of position 

fixes are restricted to observations of the launch and target 

planets. A previous study of midcourse navigation for Venus 

and Mars missions has shown that additional observations of the 

Sun or other planets does not significantly improve navigation 

accuracy (Ref. 4). Although this conclusion may not be true 

for all missions, it is thought to be general enough for the 

purpose of the present performance analysis. Both theodolite 

and sextant-type measurements are included as separate options 

in the computer program, however, only the theodolite (line-of- 

sight) measurements will be considered when discussing numerical 

results. 

Simultaneous observations of the launch and target 

planets are assumed for analysis purposes, and hence, yield a 

complete position fix (in practice, the observations would 

likely be made several minutes apart). The interval between 

observation times is held constant throughout the flight, but 

its value may be chosen arbitrarily. The one exception to this 
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schedule occurs in constant thrust flights with a coast period. 

In this case, observations are also made at the beginning and 

end of the coast period. 

Finally, the random observation errors are assumed to 

have constant variances and be mutually uncorrelated, i-e., 

N(tk) in equation (102) is a constant, diagonal matrix, 

4.3 The Computer Proqram 

The method of solution decided upon was to integrate 

the reference trajectory and linear perturbation equations 

simultaneously (the alternative would be to compute the ref- 

erence separately and store this information on tape), In 

developing the performance analysis program, then, the Lewis 

trajectory program served as the starting point. This program 

was first modified in a number of ways including the re-alloca- 

tion and enlargement of variable arrays and common storage 

blocks, and the elimination of the Newton-Raphson iteration 

routine designed to produce "converged" trajectories. In 

eliminating the iteration routine, it is assumed that the 

starting conditions necessary to regenerate a "converged" tra- 

jectory of interest are available from some other source (e-g., 

the original Lewis program). 

Figure 4 is a block diagram description of the computer 

pro9-ram y showing the function of principal subroutines and the 

flow of computations. The subroutine EQUATE sets up the dif- 

ferential equations of the problem. These include (1) the 
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nonlinear equations of motion and the Lagrange multiplier equa- 

tions which define the optimum thrust program, (2) the linear 

state transition equations 0, and (3) the "white noise" covari- 

ante equations 0. The partitioned form of the differential 

equations for 0 and Q are given in Appendix B. The subroutine 

EQUATE is called from RUNGK which performs the numerical inte- 

gration. In computing 0 and 0, the numerical integration pro- 

ceeds in a step-wise manner rather than continuously. That is, 

the initial conditions 0~1 and Q=O are reset after each celes- 

tial observation time tk. This procedure avoids the indirect 

and lengthy computation for Q (\, tk -1 ) and Q (tk, \-II 

which would be required if the integration ran continuously. 

The subroutine NAVIG, called at each observation time, computes 

the observation matrix M, the filter matrix K and the estimation 

error covariance matrix P. Navigation performance results are 

then printed, control is returned to RUNGK, and the cycle is 

repeated over the next observation interval. 

Besides the current error covariance, another useful 

measure of navigation performance is the terminal error covari- 

ante predicted, or extrapolated, on the basis of current infor- 

mation, This may be expressed as 

P(tfltk) = E { [&f&t,Itk)] [~(tf)-$(t,I\)]T } 
= a (tf ,t$p(t.J QT(tf ,\)+Q (tf 4-$ (110) 
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where f (tfltk) is defined as 

; (tfl\) = CD (tf,$, 1 (t,) + Ax&tf,tk' (111) 

The meaning of this matrix should be clarified, It is not 

directly associated with the covariance of the error in pre- 

dicting the terminal state, Since As(tf,tk) is a quantity to 

be measured in the future by the inertial instrumentation, equal 

tion (111) is not a prediction equation but, rather, it repre- 

sents the estimate of the state that would exist at tf assuming 

that no further celestial position fixes are taken. p+l +-J$Y 

then, represents the current (conditional) prediction of the 

uncertainty in the terminal state, The diagonal elements of 

this matrix decrease in magnitude with each successive celestial 

fix, and finally approach the corresponding values of P(tf) D 

The subroutine TARGET shown in Figure 4 provides for 

the computation of P(tfltk) on an optional basis. The algo- 

ritbmfor computing this matrix makes use of the following re- 

curslon relationships 

@  (tf’$) = Q ttf+kDa) @ -I (tk’tk-b) (112) 

Q (tf,tk) = Q(tf,tkw2)- Qttf’tk) 
T 

Q(t,,\-,I@ $+k) 

(113) 

where it is necessary to have available the matrices Q(tf7to) 

and Q(t f,to) which relate the initial and terminal state condi- 

tions, Hence, when using TARGET, it is first necessary to obtain 

these matrices by running through the computations indicated 
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above the dotted line in Figure 4. The integration in this 

case is continuous rather than step-wise. When the terminal 

time is reached, 0 (tf,to) and Q (tf,to) are stored by the 

subroutine TERCON, The program then proceeds to compute the 

navigation performance results as previously described. It 

should be noted that only the position and velocity components 

of P(tf/tk) are actually computed. 

For convenience in presenting numerical results, the 

statistical data are given only in terms of the magnitudes of 

vector-valued quantities such as position, velocity, etc, 

Hence, we define the following root-mean-square measures of 

the uncertainty in estimating the state variables: 

Position Uncertainty 

d 
r = 

rms E "x"1 + E %; + E r;c"a 

= \I Trace Prr 

Velocity Uncertainty 

#xl 
V = + E g2 + E "x2 rms 5 6 

Accelerometer Error Uncertainty (Low frequency component) 

s = 
rms E %; + E "x2 + E "x2 

8 9 

= d Trace P,, 

Stellar Monitor Error Uncertainty (Low freqUenCY Component) 

';i,,, = E %zO+ E ??lf E "xs, 
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III 

5: RKSULTS OF. PERFORMANCE ANALYSIS 

5,l Reference Trajectory Data 

Navigation performance results have been obtained for 

five low-thrust interplanetary missions whose characteristics 

differ in terms of the target planet, terminal conditions, 

thrust mode, and flight time. These missions are 

(1) Mars rendezvous - 205.4 days 

(2) Mars rendezvous - 181,6 days 

(3) Venus rendezvous - 120 days 

(4) Mars fly-by - 120 days 

(5) Jupiter fly-by - 360 days 

It is to be recalled that only the heliocentric (Earth-planet 

transfer) phase of these missions are considered here, Table I 

lists several descriptive conditions of these reference tra- 

_lectories2 The two Mars rendezvous flights employ an optimal 

constant thrust program with and without a coast period, Pro- 

pulsion parameters assumed here are a specific impulse of 8000 

seconds and an initial thrust acceleration of 0,981.x lo-'m/see2 

or 10e4g. The remaining three trajectories employ an optimal 

variable thrust program. In the case of the Venus rendezvous? 

acceleration reaches a minimum value about mid-flight and 

thereafter increases to a terminal value approximately equal to 

the initial acceleration, In the case of the fly-by trajectories, 

acceleration decreases monotonically with time reaching a zero 

value at tf= The hyperbolic approach velocities for the Mars 
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and Jupiter fly-bys are 12.6 km/set and 28.3 km/set, respec- 

tively. Also shown in Table I are the values of s a2 dt which 

are somewhat analogous to AV requirements for ballistic flight 

in that they determine propellant expenditure and payload capa- 

bility for a given vehicle system (see Section 2,l of this re- 

port or Ref., 81, 

Reference trajectory diagrams are given in Figures 5 

through 9, These diagrams show the Earth, vehicle, and target 

planet positions at various times in the flight, Also shown 

is the direction of applied thrust, 

The 205,4 day Mars rendezvous trajectory will be used 

as a primary example to illustrate the performance of the navi- 

gation scheme for different error parameter assumptions, This 

reference trajectory was chosen for this purpose because a 

constant thrust rendezvous mission including a coast period is 

considered a more practical example of electric propulsion ap- 

plication, Results for the remaining reference trajectories 

iisted above will be summarily described, and will serve to 

broaden the conclusions to be drawn from this performance ana- 

lysis, 

5,2 Nominal Parameter Assumptions 

Nominal values of the error model parametersare listed 

in Table II, The error magnitudes are given in terms of their 

standard deviation or RMS values, Initial velocity uncertainty 

is taken as 5 m/set in each of the X, Y and Z components which 
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are assumed to be mutually uncorrelated, The initial position 

uncertainty is taken as zero (the effect of reasonable position 

errors is small in comparison with the effect of the velocity 

error assumed). The low frequency component of the accelero- 

meter error is assumed to be a constant bias for any one flight 

(infinite correlation time) having an ensemble average of 10F6 

n-d sec2 o This error magnitude is about 0.1 percent of the ac; 

celeration level to be measured. This same magnitude is assumed 

for the high frequency error component which has a correlation 

time of 30 minutes. All optical instrumentation errors are 

assumed 10 seconds of arc, A 30 minute correlation time is 

taken for the stellar monitor error, whereas the planet sensor, 

or theodolite, error is assumed uncorrelated between observa- 

tions taken at 2 day intervals. 

The nominal parameter values were chosen somewhat arbi- 

trarily for the purpose of example; however, they are considered 

reasonably representative of actual system errors that may be 

expected. In any case, the effect of changes in these para- 

meter values will be discussed, 

5,3 Naviqation Performance for Mars Rendezvous Mission 

In this section, we discuss the performance results 

obtained for navigating along the 205,4 day Mars rendezvous 

trajectory which is shown in Figure 5. Unless otherwise speci- 

fied, the system parameters have the nominal values given in 

Table II. 
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For reference purposes, let us first consider the per- 

formance of the stellar monitored inertial system alone, Figures 

10 (a) and (b) show the effects of individual system errors on 

the accuracy of position and velocity estimation in the ab- 

sence of planetary observations, These results are obtained 

from the estimation covariance equations with N(tk) set equal 

to a very large value, which is equivalent to not taking plane- 

tary sightings. It is seen that the initial velocity uncer- 

tainty and the accelerometer bias have about the same effect 

on the terminal state uncertainty, which is on the order of 

200,000 km and 30 m/set. The error buildup due to the accelero- 

meter bias is, of course, much slower, During the first 40 days 

of flight, the initial velocity uncertainty is the predominant 

cause of navigation inaccuracy. The high frequency accelero- 

meter error, although having the same magnitude as the bias 

error, is only about 1/40th as effective as the latter in its 

contribution to navigation inaccuracy, The stellar monitor 

error has a completely negligible effect on the inertially 

measured position and velocity, This error cannot be ignored, 

however, as far as its effect on-planet line-of-sight measure- 

ments is concerned since these measurements are assumed to be 

referenced to the coordinate frame established by the stellar 

monitor, 

Performance results of the optimal celestial-inertial 

navigation procedure are presented in Figures 11 (a) - (d), 
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Figure 11 (a) compares the position uncertainty time histories 

for inertial-only, celestial-only, and celestial-inertial 

measurements, The inertial measurement curve is the combined 

result of the individual error effects given in Figure 10 (a)0 

The celestial measurement curve depicts the position determina- 

tion accuracy available from a complete and independent position 

fix at points along the trajectory0 The celestial position 

information is not particularly good, yielding position uncer- 

tainties ranging from 7000-27,000 km, However, beyond 20 days 

of flight, it is far better than the inertially determined po- 

sition, The shape of the celestial position fix curve is influ- 

enced by the distance and angular intersection of the vehicle- 

Earth and vehicle-Mars vectors, Although Earth and Mars, 

respectively, are closest (106km) to the vehicle at the first 

and last observation points, the best accuracy is attained at 

mid-flight. 

The performance improvement offered by optimal pro- 

cessing of both celestial and inertial information is clearly 

indicated by the lower curve of Figure 11 (a), Here, position 

uncertainty is held below 4500 km throughout the flight, The 

terminal uncertainty is only 500 km - almost three orders-of- 

magnitude below that obtained with only inertial measurements, 

The largest components of position uncertainty lie in the plane 

of motion, The out-of-plane component never exceeds 500 km, 

and the average value over the flight is much less than this. 
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Figure 11 (b) shows the time history of the velocity 

estimate uncertainty for both inertial and celestial-inertial 

measurements. As in the case of position, the performance im- 

provement due to the addition of celestial information is quite 

significant. The five planetary observations taken during the 

first 10 days of flight reduce the velocity uncertainty from 

8,66 m/set to 1.3 m/set. The upturn in the curve at this point 

is due to the effect of accelerometer errors which are now be- 

coming significant (see Figure lob). This trend is then damped 

by the additional celestial information. Velocity uncertainty 

is kept below 1 m/set after 70 days, and reduces to a value of 

only 0,25 m/set at the end of the flight. 

It is recalled that accelerometer bias is being esti- 

mated along with position and velocity, Figure 11 (c) shows 

the time history of the uncertainty in estimating this quantity, 

Knowledge of the accelerometer bias is significantly improved 

as a result of celestial information. After 100 days, the bias 

uncertainty has been reduced by a factor of 16, and then further 

reduced by a factor of 2 during the next 100 days of flight, 

Even though the accelerometer bias is not in effect during the 

coast period (52-149 days), celestial information obtained 

during this time does allow continuing improvement in its esti- 

mation, This is akin to estimating the value of a step function 

input to a system after the input has been removed - a procedure 

which is made possible by measurements of the system response, 
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The expected asymptotic behavior of this procedure as time 

elapses is in evidence in Figure 11 (c). 

Figure 11 (d) shows a time history of the predicted 

terminal state uncertainty, both position and velocity, One 

may read this figure as the reduction of terminal uncertainty 

resulting from successive planetary observations. It is noted 

that the first observation taken at 2 days reduces the position 

uncertainty by 100,000 km and the velocity uncertainty by 

12 m/set. This same reduction then occurs again after 40 days 

of flight. At 120 days, the predicted terminal position and 

velocity uncertainty has been reduced to values 5500 km and 

1 m/set, respectively, The remaining 40 observations bring 

the terminal uncertainty down to 510 km and 0,25 m/set, with 

the greatest improvement occuring during the last 20 days of 

flight when the vehicle closes on Mars, 

Effect of Parameter Chanqes 

We will now consider the effect on navigation perfor- 

mance when different values are assumed for the system model 

parameters. All parameters not specifically varied are kept 

at their nominal values as summarized in Table II. Generally, 

the format for data presentation is to plot the time history 

of position uncertainty and tabulate the time histories of 

velocity, accelerometer bias, and predicted terminal position 

uncertainties. 

-73- 



Figure 12 together with Tables III (a)-(c) compare the 

performance results for initial velocity uncertainties of 0,5 

and 10 m/set. In the case of perfect initial velocity informa- 

tion, performance is significantly improved over the first 

80 days of flight, but very little thereafter. At the final 

time, the uncertainty in position is reduced only 100 km from 

the nominal value. In the case of 10 m/set initial uncertainty, 

no discernable performance degradation exists beyond 10 days of 

flight., These results imply that on-board measurements are 

sufficiently accurate so as to give little weight to a priori 

velocity information, at least for initial uncertainties above 

several meters per second. 

Table IV shows the effect on performance of different 

correlation times associated with the low frequency accelero- 

meter error. Listed are the RMS uncertainties in the estimates 

of position, velocity and accelerometer error (low frequency) 

at various points along the trajectory. Results are shown for 

correlation times of 5,50,100 and 200 days in addition to the 

nominal Value cm (bias) o Correlation time is seen to have a 

rather complicated effect on system performance., During the 

early portion of flight, position and velocity uncertainty is 

least for low values of correlation time, although the differ- 

ences are not very significant. This situation then reverses 

as time progresses. At the terminal time , position and velocity 

uncertainty range from 2050 - 514 km and 1.36 - 0.252 m/set, 
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respectively, as 'Go& ranges from 5 days to 00, The-explanation 

of this result lies in the opposing effects of changing 'cat0 In 

particular, the more highly correlated the accelerometer error 

the larger the effect on position and velocity uncertainty, On 

the other hand, the more highly correlated the error the greater 

the accuracy in estimating this error, When the low frequency 

error is a pure bias, srms is seen to decrease very rapidly with 

successive celestial observations, However, for finite correla- 

tion times even as large as the total flight time, the estimate 

hardly improves at all, This was a somewhat surprising and dis- 

couraging result, Figure 13 shows a more detailed comparison of 

the position uncertainty for correlation times of 200 days and ~0, 

The relatively poorer performance associated with the finite-time 

correlation error is a significant result in that it is probably 

unrealistic to expect the low-frequency accelerometer error to 

remain constant throughout the entire mission, Rather, this error 

may be attributed to a slowly changing calibration, such as due to 

aging. 

Figure 14 together with tables V (a)-(c) show the ef- 

fect of varying the magnitude of both the random and bias compo- 

nents of accelerometer error0 Errors of l/10 th and 10 times the 

nominal value are considered. Without the benefit of celestial 

observations, the corresponding terminal position uncertainties 

are 266,000 km and 1,950,OOO km, When celestial observations 

are included, these uncertainties are reduced to 377 km and 1890 

km- about three orders of magnitude, The corresponding terminal 
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velocity uncertaintites are 0.151 m/set and 1.23 m/set. These 

results are to be compared with 514 km and 0.252 m/set for the 

nominal accelerometer error. As seen from the figure, the mag- 

nitude of the accelerometer error affects the shape of the position 

uncertainty time history. The explanation for this lies in the 

relative weighting of inertial and celestial information, Thus, 

for large aa, the celestial information is weighted more heavily 

as time progresses. This is especially true during the coast 

period (52-149 days) when accelerometer errors do not directly 

influence state uncertainty: hence, the pronounced dip in the 

response, 

Considering the fact that the assumed accelerometer 

error has ranged over two decades, the difference in performance 

is not nearly as significant as one might have expected, This is 

an important result as it relates to the accuracy requirements of 

low-level accelerometers, Although this example is certaintly not 

conclusive, it would seem to indicate first, that an extremely good 

accelerometer may not appreciably improve navigation accuracy, and 

second, that a rather poor (1 percent) accelerometer may be used, 

if necessary, without too serious of a performance loss. 

It was of interest to examine the effect of celestial 

sensor errors on state estimation accuracy. The results for 

sensor errors of 5,lO. and 20 seconds of arc are compared in Fig- 

ure 15 and tables VI (a)-(c). During the first 20-30 days of 

flight, performance is not appreciably affected by sensor error 

since inertial information is weighted more heavily in this region, 
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An expected breakaway then occurs, and in the region 40-180 days 

the performance ratios remain roughly proportional to the sensor 

error ratios. As the terminal time is approached this propor- 

tionate effect of sensor error is somewhat reduced. With respect 

to the nominal case, final position uncertainty is improved by 

30 percent for the 5 second of arc sensor and degraded about 66 

percent for the 20 second of arc sensor. 

Figure 15 and tables VII (a) and (b) show the effect of 

changing the frequency of celestial observations. For this 

example the nominal observation interval of 2 days was first 

reduced to 1 day and then increased to 5 days. Again, during 

the first 30 days of flight navigation accuracy is not appre- 

ciably affected by the observation interval. In the region 

40-130 days, the 1 day observation interval produced about a 

25 percent reduction in both position and velocity uncertainty 

while the 5 day observation interval increases theuncertainty 

by roughly 50 percent. At the final time, theposition uncer- 

tainties for the 1,2 and 5 day observation intervals are, 

respectively, 420, 510 and 870 kilometers. The corresponding 

velocity uncertainties range from 0.22 to 0.35 meters per second, 

With respect to the terminal uncertainties, there is no signi- 

ficant difference between the 1 and 2 day observation schedules. 

However, if one considers navigation performance over the entire 

trajectory, the daily observation schedule is definitely perfer- 

able. 
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Figure 1': is a plot of position uncertainty over the 

first 30 days of flight for different combinations of celestial 

sensor random and bias error. The addition of a 5 second of 

arc bias to the nominal 10 second of arc random error causes 

the maximum position uncertainty to increase by 1000 km, or 

about 20 percent. 'When the random and bias errors are each 

5 seconds of arc, the maximum uncertainty is reduced 1000 km 

below the nominal case. Figure 1L. shows the time history of 

this uncertainty in estimating the bias components of P,a and 

rl- Initially, each of the bias uncertainties are 5 seconds of 

arc. The largest improvement is obtained for the stellar monitor 

bias (7) where, at the end of 30 days, the uncertainty has been 

reduced to 3.5 seconds of arc. The least improvement occurs in 

estimating the planet longitude bias (P) where, at the end of 

30 days, the uncertainty has been reduced to only 4.4 seconds of 

arc. In general, and as expected, no great gains are made in 

estimating the celestial sensor bias components. 

5.4 Naviaation Performance for Other Missions 

A brief summary of navigation performance for the 

four other missions listed in Table I is now given. The nomi- 

nal parameter values listed in Table II are used for this ex- 

ample with one exception. In the case of the Jupiter flyby 

mission, the celestial observation interval is 5 days. Results 

are shown in Figures 19 through 22 where we have plotted the 

predicted terminal position uncertainty, rrms(tf[t), as a func- 

tion of time. The figures then show the reduction of terminal 

position uncertainty with successive celestial observations. 
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This was felt to be a suitable summary performance index to 

plot in lieu of presenting the great amount of performance data 

obtained. Results are further summarized in the table below 

which gives the terminal position and velocity uncertainties. 

Mission 
nJ 

ms (tf) 7 k 
w r V m rms (tf) , dsec 

Mars rendezvous (131.6) 334 0.212 
Venus rendezvous (120) 301 0,247 
Mars flyby (120) 1410 0,397 
Jupiter flyby (360) 7120 0,630 

Performance results forthetwo rendezvous missions 

are about the same, and also agree quite well with the results 

previously given for the 205.4 day Mars rendezvous mission, 

The terminal position uncertainties for the two flyby missions 

are, however, considerably greater, One reason for this is 

that, in the case of the flybys, the vehicle spends relatively 

little time in the near vicinity of the target planet, say 

within 10 million kilometers. It is in this region where the 

terminal position uncertainties are greatly reduced, This is 

particularly true in the case of the Jupiter flyby where the 

next to last observation is made at a distance of 13 million 

kilometers from Jupiter: Obviously, the terminal position 

uncertainties could be reduced in each of the flyby cases by 

taking more frequent observations as the target planet is 

approached. The terminal uncertainties are not, however, the 

full measure of navigation performance. For the Mars flyby, 

- 79- 



the estimate of vehicle motion obtained over the entire tra- 

jectory is about equally as good as that obtained for the 

rendezvous missions. This is not the case, however, for the 

Jupiter flyby. The principal reason for this is that the 

vehicle is at great distances from both Earth and Jupiter dur- 

ing most of the flight. Hence, the celestial position fixes 

are of relatively poor quality. As a means of Improving navi- 

gation accuracy, one could consider the possibility of observing 

Mars at appropriate points along the Jupiter transit-, Of course? 

the phasing of the planets would be an important factor here, 

Another, and even better, solution would be to observe certain 

selected asteroids as the vehicle passes through the asteroid 

belt between Mars and Jupiter. Due to the large number of such 

'asteroids, the measurement baselines and angular relationships 

could be judiciously chosen so as to obtain extremely accurate 

position fixes, 
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6, CONCLUDING REMARKS 

Results have shown that the optimal celestial-inertial 

navigation concept performs quite well and offers several orders- 

of-magnitude improvement over pure inertial navigation. The 

stellar monitor observation and correction process effectively 

eliminates gyro drift as a significant error parameter, In its 

place is substituted the stellar monitor error3 however, this 

error has relatively little effect on acceleration measurement 

error, The low frequency accelerometer error, then, remains as 

the major source of information uncertainty. However, the fre- 

quent celestial angle observations serve to reduce this uncer- 

tainty. When the accelerometer error is initially a constant 

but unknown bias, the improvement is marked, In this case, 

vehicle position and velocity uncertainty throughout the helio- 

centric flight may be held to within quite acceptable limits 

for the purpose of midcourse guidance. The terminal uncer- 

tainties (at the target planet's sphere of influence) are 

typically within 1000 km in position and 1 m/set in velocity, 

One important result that has been found is the relative in- 

sensitivity of navigation performance over a wide range of 

accelerometer bias magnitudes. This would imply the possible 

use of rather poor instruments (1 percent), if necessary, with- 

out serious performance degradation. 

Specific numerical results described in this report 

should best be considered indicative of the performance that 
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may be expected of celestial-inertial navigation systems applied 

to low-thrust vehicles, Final performance results could only 

be obtained after such systems are actually designed and 

tested so that improved instrumentation error models are avail- 

able for analysis, Apart from the important problem of practical 

design of the navigation system, future analytical studies in 

this area should be concerned with the following problems: 

1, 

2, 

Application of the navigation concept to the planeto- 
centric phases of interplanetary missions, i,e., the 
escape and capture spiral phases, This would be 
necessary in order to tie together the navigational 
requirements and performance for a complete mission. 

Investigate the effect of false assumptions in a 
priori statistical data. That is, how do the true 
and estimated navigation errors compare when false . . a priori covariance data are used in the state esti- 
mation procedure. 

L 
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APPENDIX A 

LIST OF SYMBOLS 

Matrices: 

A linearized state coefficient matrix 

B "white noise" influence matrix 

D thrust acceleration influence matrix 

G gravitational acceleration partials with respect to 
position 

H submatrix in M containing geometry vectors & 

H1 submatrix in M to account for platform misalignment 
(stellar monitor errors) 

I identity (unit) matrix of appropriate dimensions 

K filter or weighting matrix 

L diagonal matrix of correlation time reciprocals 

M celestial observation matrix 

N covariance matrix of random celestial sensor errors 

0 null matrix of appropriate dimensions 

P covariance matrix of state estimation errors 

Q covariance matrix of integrated "white noise" effects 

U covariance matrix of "white noise" inputs 

A coefficient matrix relating platform misalignment to 
acceleration measurement error 

state transition matrix 
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Vectors: 

All vectors are to be considered column vectors unless 

otherwise specified. 

thrust acceleration 

gravitational acceleration 

geometry vector relating space angle and position 
variations 

unit vector in direction of star 

random (time-uncorrelated) celestial sensor errors 

bias error of theodolite or sextant-type measurements 

integrated effects of u on state variables 

vehicle position deviation from reference trajectory 

vehicle position 

vehicle-planet vector 

"white noise" input 

vehicle velocity deviation from reference trajectory 

vehicle velocity 

augmented state 

estimate of z 

error in estimate, x - ir* 

measured space angle from reference value 

measured thrust acceleration from reference value 

platform (inertial measurement frame) misalignment 

change in x over time interval as measured by accelero- 
meters 

accelerometer errors 
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9 I/ low frequency component of La 

&h high frequency component of sa 

y/ low frequency stellar monitor errors 

!h 
high frequency stellar monitor errors 

a, measured space angle 

Scalars: 

a thrust acceleration 

g 
IX-IS 

RMS error in estimating accelerometer error 

F thrust force 

90 
Earth surface gravity, 9,806 m/sec2 

I 
sP 

specific impulse 

kT factor to account for IMU shutdown during coast: 
1 if a*#o, 0 if a* = oc 

M vehicle mass 

P. 
3 

P (co) 
rJ r KTllS 

S 

t 

tk 
N 
V n-l-IS 

V. 
3 

(X,Y,Z) 

a 

kinetic power in exhaust jet 

power spectral density 

RMS error in estimating position 

Laplace operator 

time 

time instant at kth celestial observation 

FU4S error in estimating velocity 

jet (exhaust) velocity 

position components in fixed Cartesian frame 

planet latitude as seen from vehicle 

planet longitude as seen from vehicle 

included angle between planet and star 
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solar gravitational constant, 1.327 x 10 20 m3/sec 2 

variance of low frequency accelerometer error 

variance of high frequency accelerometer error 

variance of theodolite or sextant bias 

variance of gyro drift 

variance of theodolite or sextant random error 

variance of low frequency stellar monitor error 

variance of high frequency stellar monitor error 

correlation time of low frequency accelerometer error 

correlation time of high frequency accelerometer error 

correlation time of low frequency stellar monitor error 

correlation time of high frequency stellar monitor error 

auto correlation function 

frequency variable 

Operators: 

Et > expected value of ( ) 

( IT transpose of matrix ( ) 

( 1-l inverse of matrix ( ) 

to) time derivative of ( ) 

Subscripts: 

f final or terminal value 

0 initial value 

(X,Y,Z) components of vector quantity 
Superscripts: 

* reference value 
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APPENDIX B 

1. 

PARTITIONED FORM OF ESTIMATION EQUATIONS 

State Vector 

2. Transition Matrix 

O= 

& rr 
* 

Q rr 

CD vr 

0 

0 

0 

10 vr 

% 

0 vv 

0 

0 

0 

0 

0 

0 

0 

0 

0 

I 
1 - 

(Bl) 

(B2) 

033) 

034) 

(B5) 

(B6) 

037) 

038) 

(B9) 
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-L (t - to) 
-Ta& Q&to) = e "I 

-IL (t - to) 
-T-& fDrlrl(t,to) = e l I (B12) 

In equations (B3) through (BlO), all initial conditions are zero 

with the exception of Qrr(to, to) 

-'Zr 0 -I= 1 CDT rr A3 

0 0 -1 Q EE 

0 0 0 

0 0 0 

(Bll) 

= Ovv(to, toI = I. 

where 

0313) 

(814) 

(B15) 

(B16) 

(B17) 
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II 

This simplification in obtaining the iliverse transition matrix 

is due to a special property of the transistion matrix asso- 

ciated with the position and velocity state variables (Ref.11 ). 

4. Error Covariance Matrix 

r P prv P r& P P- rr '7 rn 

P= 

\ 
P P vv VE P P 

vv vn 
\ 

P E& P 
Erl 

P En 
\ 

SYMMETRIC P P 
77 rln 

\ 
P nn 

L 

5. ODtimal Filter 

K= 

= 

'rrHT 

PT HT rv 

PT HT rE 

PT HT 
r'l 

PT HT rn L 
PT HT 

rln l 

0318) 

(B19) 
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where 

K = H(PrrHT - PrrlHT + Pm) - H,(PzqHT - P7,HT + P 
T-J 

0320) 

+ PT HT -PTHT+P +N rn qnl nn 

6. Q Matrix 

Q 

1 

rr Qrv *rE *rq O 
\ 

Q vv Q VE Q 0 
vrl 

\ 
Q= Q && 0 0 

\ 
SYMMETRIC Q 0 

77 
\ 

0 

brr = Q, + QzV 

(rrv = Qvv + QrrGT+k;mrE + OrvAT 

Qvv = GQrV+ (GQ,jT +(Qvc + Q;,)& 

+ (QV7AT) + (Q,rlnT) 
T 

'rc = QVE -I- - -Ga& Q rE 

QVE = GQrE- 
1 
T& *VE+JTQEE 

0321) 

(B24) 

(B25) 

.(~26) 

(B27) 

(B28) 
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I 

-2 (t-t,) 
Q EE (t,to) = of&, [l - e Tax l I 1 (B29) 

*v-l (tyto) = G2 [l - e 
rlJJ (B30) 

In equations (B22) through (B28), the initial condition is zero, 
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TABLE I - REFERENCE TRAJECTORY CONDITIONS 

Mission 

---_-_ - --- 

Mars Rendezvous 
205.4 days 

- -----_ 

Mars Rendezvous 
181.6 days 

Venus Rendezvous 
120 days 

Mars Flyby 
120 days 

Jupiter Flyby 
360 days 

l- 

] 

I 

Thrust Mode 

Constant Thrust 
with Coast Period 

I - 8000 set 
sP - 

Constant 
Continuous Thrust 

I = 8000 set 
sP 

Variable 
Thrust 

Variable 
Thrust 

Variable 
Thrust 

- I 

I 1 

a 
0’ 

m/set 2 
~-_ 

-- 

0.981~10 -3 

2.04x10 -3 

-- 

1.78x10 -3 

1.44x1o-3 

af' 
m/set 2 

1.11x1o-3 

1.22x1o-3 

2.06x10 -3 

0 

0 

T 

1 

I - 

VP 
km/se 

0 

12.6 

28.3 

C 

L 

tf a2dt 
Jo ' 

m2/sec 3 

10.2 

18.8 

12.0 

9.27 

22.8 



TABLE II - NOMINAL PARAMETER VALUES 

1. Initial Position and Velocity Uncertainty 

Position: P rr =o 

Velocity: P 2 
vv = (5 m/set) l I 

Correlation: Prv = 0 

2. Accelerometer Errors 

a) Low frequency: .- 10m6 m/sec2 'at -- 
z 

al 
= 00 (Bias) 

b) High frequency: aah = 10 -6 m/set 2 

Zah = 30 minutes 

3. Stellar Monitor Errors 

a) Low frequency: 0 
nA 

= 0 

b) High frequency: 'nh = 10 seconds of arc 

rGnh = 30 minutes 

4. Planet Sensor (Theodolite) Errors 

a) Random: *r = 10 seconds of arc 

b) Bias: 'b = 0 

5. Celestial Observation Interval 

2 days (Both launch and target planets are 
observed) 
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TABLE III - EFFECT OF INITIAL VELOCITY UNCERTAINTY 
ON STATE ESTIMATION ACCURACY, 
MARS RENDEZVOUS (205.4) 

(a) Velocity Uncertainty, Grms 

Time, days 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

205.4 

_- _~ 

Initial Velocity Uncertainty jv 1 
0 _. -1. I -;mSm/lecIDm/je;i 

Velocity Uncertainty, m/set 

0 

. 661 

.660 

.745 

.610 

.413 

.289 

.238 

.272 

.326 

. 209 

8.66 17.3 

1.74 1.75 

2.50 2550 

1.58 1758 

.792 .792 

.462 ,462 

.322 .322 

.277 .277 

.330 .330 

,439 .439 

.252 .252 

Other parameters have nominal values - table II 
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TABLE III - EFFECT OF INITIAL VELOCITY UNCERTAINTY 
ON STATE ESTIMATION ACCURACY, 
MARS RENDEZVOUS (205.4) 

(b) Accelerometer Bias Uncertainty, $,ms 

Time, days Accelerometer Bias Uncertainty, m/set 2 - 
0 1.73x1o-6 

20 .381 

40 ,184 

60 ,141 

80 .099 

100 .071 

120 .060 

140 .056 

160 .054 

180 .051 

205.4 .042 

1.73x1o-6 

1.15 

.701 

.302 

.144 

.lOl 

.089 

.084 

.082 

.076 

.053 I 

1.73x1o-6 

1.16 

-703 

,302 

.144 

.lOl 

.089 

.084 

.082 

.076 

.053 

Initial Velocity Uncertainty cTv 

0 5 m/set 10 m/set 

Other parameters have nominal values - table II 
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TABLE III - EFFECT OF INITIAL VELOCITY UNCERTAINTY 
ON STATE ESTIMATION ACCURACY, 
MARS RENDEZVOUS (205.4) 

(c) Predicted Terminal Position Uncertainty, yrms(tf}t) 

I 5 m/set 10 m/set I 

Time, days Terminal Position Uncertainty, 103km 

0 194 328 

4 155 224 

8 100 201 

10 97.2 196 

20 52:5 178 

30 35-o 160 

40 28.6 126 

50 25.2 84.2 

- 

205,4 0,401 0,514 
-- - 

- 

565 

254 

204 

198 

180 

161 

126 

8422 

0,514 

1 

Other parameters have nominal values - table II 
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TABLE IV - EFFECT OF ACCELEROMETER ERROR LOW-FREQUENCY 
CORRELATION TIME ON STATE ESTIMATION ACCURACY, 
MARS RENDEZVOUS (205.4) 

-I- I 
Correlation 

Time 'G 3, ') 
days 

a 
7 

rms, 
m/set 2 

e Uncertain 
9 rms, 
m/set 

St; 
P rms' 

km 
Time, 

days 

20 5 
50 

100 
200 

Ccl 

1240 1.27 
1640 lz69 
1670 1,71 
1690 1.72 
1700 1.74 

1.69~10-~ ' 
1,35 
1,27 
1,21 
l-15 / 

5 3590 l-92 1.72 
50 4390 2543 1,30 

100 4430 2.37 1.08 
200 4430 2.29 :875 
cm 4410 2714 x436 

5 2100 588 1 73 
50 2110 ,.592 1.64 

100 2090 ,559 1.45 
200 2060 ,529 1,17 

00 1970 ,462 .lOl 

5 1870 l 359 1.73 
50 1830 349 1.72 

100 1790 ,338 1,63 
200 1750 ‘326 1.41 
co 1550 ,273 .083 

5 3170 1262 
50 3830 2338 

100 3810 2036 
200 3620 2,16 
cm 1970 -438 

51.8 

100 

149 

180 

205.4 5 2050 
50 1970 

100 1750 
200 1540 
co 514 

1.36 
1,44 
1.25 
1,05 

. 252 

Other parameters have nominal values - table II 
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TABLE V - EFFECT OF ACCELEROMETER ERROR MAGNITUDE 
(RANDOM AND BIAS) ON STATE ESTIMATION 

ACCURACY, MARS RENDEZVOUS (205.4) 

(a) Velocity Uncertainty, Yrms 

Accelerometer Errors u a&' 'ah 

lo-5 m/set 2 

Time, days 1. Velocity Uncertainty, m/set 

0 8,66 8.66 8-66 

20 0 286 1.74 5.15 

40 -433 2,50 3.68 

60 -574 1.58 1.91 

80 .557 ,792 D 949 

100 .416 .462 .573 

120 ,302 ,322 ,411 

140 -257 0277 0 359 

160 . 283 ,330 1,14 

180 -346 .439 1.51 

20504 ,151 -252 lo23 

Other parameters have nominal values - table II 
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TABLE V - EFFECT OF ACCELEROMETER ERROR MAGNITUDE 
(RANDOM AND BIAS) ON STATE ESTIMATION 

ACCURACY, MARS RENDEZVOUS (205.4) 

(b) Accelerometer Bias Uncertainty, zrms 

Accelerometer Errors u u agy ah 

lo-7 m/set 2 lo-6 m/set 2 lo-5 m/set 2 

Time, days 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

205.4 

T Accelerometer Bias Uncertai.nty, m/set" 

.17.3x1o-6 

.165 

. 141 

.121 

.097 

.074 

-063 

-058 

,054 

.051 

-021 

1.73x1o-6 17.3x1o-6 

1.15 3.20 

,701 1.19 

,302 ,657 

.144 ,566 

.lOl .548 

.089 0542 

.084 .538 

.082 ,524 

.076, .457 

,053 ,381 

Other parameters have nominal values - table II 
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TABLE V - EFFECT OF ACCELEROMETER ERROR MAGNITUDE 
(RANDOM AND BIAS) ON STATE ESTIMATION 

ACCURACY, MARS .RENDEZVOUS (205.4) 

(c) Predicted Terminal Position Uncertainty, Frms(t,(t) 

Time, days Terminal Position Uncertainty, 103km 

0 266 328 1,950 

4 111 224 1,270 

8 37.3 201 1,050 

10 27.0 196 857 

20 17.5 178 546 

30 16.6 160 323 

40 16.1 126 182 

50 15.6 84.2 101 

205.4 0.377 0.514 1.89 

I I 

Accelerometer Errors CT u a&' ah 

Other parameters have nominal values - table II 

-lOl- 



TABLE VI - EFFECT OF CELESTIAL SENSOR RANDOM 
ERRORS ON STATE ESTIMATION ACCURACY, 
MARS RENDEZVOUS (205.4) 

(a) Velocity Uncertainty, Crms 

Sensor Errors u qh' *r 

5 set arc I 10 set arc I 20 set arc 

Time, days 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

205.4 
, 

Velocity Uncertainty, m/set 

8.66 8.66 8.66 

1.50 1.74 1.91 

1.55 2.50 3.26 

.820 1.58 2,84 

.402 -792 1.55 

.236 .462 .916 

.166 .322 -636 

.144 .277 .545 

.199 .330 .619 

,277 .439 -786 

.192 .252 0376 

Other parameters have nominal values - table II 
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TABLE VI - EFFECT OF CELESTIAL SENSOR RANDOM 

ERRORS ON STATE ESTIMATION ACCURACY, 

MARS RENDEZVOUS (205.4) 

(b) Accelerometer Bias Uncertainty, zrms 

i-. ---. 
I 

Sensor Errors uqh, cTr 

I 
I- 5 set arc 10 set arc 20 set arc 

Time, days 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

205.4 

. 
I Accelerometer Bias Uncertainty, m/set 2 

-- 

1.73x1o-6 

.938 

.434 

.163 

.087 

.070 

.066 

.064 

.063 

-057 

.045 

1.73x1o-6 

1.15 

.701 

.302 

.144 

.lOl 

-089 

.084 

.082 

-076 

.053 

1.73x1o-6 

1.33 

.939 

-540 

.266 

.177 

-149 

.138 

-132 

.123 

-074 

Other parameters have nominal values - table II 
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TABLE VI - EFFECT OF CE:,ESTIAL SENSOR RANDOM 
ERRORS ON STATE ESTIMATION ACCURACY, 
MARS RENDEZVOUS (205.4) 

(c) Predicted Terminal Position Uncertainty, yrms(tf(t) 

Sensor Errors aqh, or 

5 set arc 10 set arc 20 set arc 1 

Time, days Terminal Position Uncertainty, 103km 

0 328 328 328 

4 215 224 231 

8 196 201 208 

10 188 196 201 

20 158 178 187 

30 120 160 179 

40 78.1 126 163 

50 46.0 84.2 132 

- - 

205.4 0.357 0.514 0.853 

Other parameters have nominal values - table II 
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TABLE VII - EFFECT OF CELESTIAL OBSERVATION INTERVAL 
ON STATE ESTIMATION ACCURACY, 
MARS RENDEZVOUS (205.4) 

(a) Velocity Uncertainty, Grms 

I Observation Interval 

I 2 'days 5 days 

0 8.66 8.66 8.66 

20 1.65 1.74 1.82 

40 2.05 2.50 2.97 

60 1.17 1.58 2-29 

80 .576 .792 1.17 

100 .335 .462 .693 

120 .233 -322 .489 

140 .200 .277 .427 

160 .252 .330 .497 

180 .345 .439 -645 

205.4 .219 .252 -347 

Time, days Velocity Uncertainty, m/set 1 

I I 

Other parameters have nominal values - table II 
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TABLE VII - EFFECT OF CELESTIAL OBSERVATION INTERVAL 
ON STATE ESTIMATION ACCURACY, 
MARS RENDEZVOUS (205,4) 

(b) Accelerometer Bias Uncertainty, Trms 

Time, days 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

20504 

Observation Interval 

1 day 2 days 5 days 

Accelerometer Bias Uncertainty, m/set 2 1 
1.73x1o-f 

1.06 

.575 

.226 

,111 

.082 

-075 

-072 

.070 

.065 

-049 

5 1.73x10-6 1.73x1o-6 

1.15 lo24 

.701 .845 

,302 .436 

.144 .207 

,101 .142 

.089 :123 

,084 .114 

.082 .109 

.076 ,102 

.053 -067 

Other parameters have nominal values - table II 

-106- 



I 

GYROSCOPIC a v 
REFERENCES 

> ACCELEROMETERS m  
&em -I 

L KNOWN l / 
COORDINATE 

FRAME 

FIGURE 1 PURE INERTIAL SYSTEM,  STANDARD FORM AND DYNAMICALLY EXACT 



Y . nv 
& -9 ‘- / dt -*A ,/ dtr - 

FIGURE 2 ERROR BLOCK DIAGRAM OF PURE INERTIAL, SYSTEM 



Z 
4 

(a) THEODOLITE TYPE MEASUREMENT 

STAR AT 00 

STAR DIRECTION 
PLANET 

SUN 

VEHICLE 

(b) SEXTANT- TYPE MEASUREMENT 

FIGURE 3 CELESTIAL ANGLE MEASUFUZMENTS 

109 



t GENERATE REFERENCE TRAJECTORY 
AND LINEARIZED STATE TRANSITION 

MAIN * INPUT 

INITIALIZATION < - LOADS INPUT DATA 

a 

t=tf t=o 

V 
RUNGK EQUATE 

* 
4TH-ORDER RUNGE - DEFINES EQUATIONS 

, KUTTA INTEGRATION Q TO BE INTEGRATED 

A 
t= t, 

----P--P- P------P-m- 
NAVIGATION PERFORMANCE 

v 

OUTPUT l NAVIG 

PRINT TRAJECTORY COMPUTE OBSERVATION. 
AND NAVIGATION < . DATA, KALMAN FILTER 

PERFORMANCE AND ERROR COVARIANCE 

a I 

I I 
I I 
I J( 
TARGET 

PREDICTED POSITION 
AND VELOCITY 

UNCERTAINTY AT TARGET 

FIGURE 4 COMPUTER PROGRAM ORGANIZATION 



\ 

205 

100 80 8. 
140 s---(x 

I DIRECTION 

0 180 >X 
I \ 

205.4 

\ 
\ 

\ 
-- 

/ 
2e 

EARTH 
ORBIT 

FIGURE 5 MARS RENDEZVOUS 205.4 DAYS, 
CONSTANT THRUST MODE WITH 

COAST PERIOD 

111 



100 80 ‘E--o--- MARS ORBIT 

40 
\ 

’ 20 
‘s 

\ 

ORB IT A -I .-I.-- 

DIRECTION 

/ 

/ 

P 160 

I 

0 

\ 

I 
0 181.6 
I 

NX 
SUN 0 

I DAYS 

FIGURE 6 MARS RENDEZVOUS 181.6 DAYS, 
CONSTlNT THRUST MODE WIlWlUT 

COAST PERIOD 



100 80 
/*--TLC 

60 , EARTH ORBIT 

“OF, i \, 

VENUS ORBIT 

P-x P-x 20 20 THRUST THRUST 

I I 
DIRECTION DIRECTION 

/ 

0 
d 

FIGURE 7 VENUS RENDEZVOUS 120 DAYSJVARIAJ3LE 
THFtUS!T MODE 



THRUST 
DIRECT ION 

ix 
-SUN DAYS 

FIGURE 8 MARS FLYBY 120 DAYS,VARIABLE 
THRUST MODE 

114 



/JUPITER 01wn 
/ 

0 

60 
p’ 

p’ 
120 

sf 

I- 
f 
I 
I 
I 

FIGJRE 9 JUPITER FLYBY 360 DAYS,VARIABLE 
THRUST MODE 



N(t,$ = a 

INITIAL VELOCITY 
LINCERTAINTY 

~ A;EAEROMETER ERROR 
\“-.-I 

0 40 80 120 160 200 240 
TIME, DAYS 

(a) POSITION UNCERTAINTY 

FIGURE 10 EFFECT OF INERTIAL SYSTEM ERRORS IN THE ABSENCE OF 
PLANETARY OBSERVATIONS, MARS RENDEZVOUS (205.4) 

116 



N($$=cD 
INITIAL VELOCITY 
UNCERTAINTY 

(BIAS) 

ACCELEROMETER ERROR 
(HIGH FREQUENCY 1 

STELLAR MONITOR ERROR 
(HIGH FREQUENCY 1 

0 40 80 120 160 200 240 

(b) VELOCITY UNCERTAINTY 

FIGURE 10 CONTINUED 

117 



INITIAL MEASUREMENTS ONLY 
(WITH STELLAR MONITOR) 

FIX ONLY 

0 40 80 120 160 200 240 
TIME, DAYS 

(a) POSITION ESTIMATIObl ACCURACY COMPARISON 

FIGURE 11 PERFORMANCE OF OPTIMAL ESTIMATION PROCEIXJRE 
FOR MARS RENDEZVOUS (205.4). 
ASSUMEDPARAMETER VALUES - TABLE II 

118 

I I I I I I I I I I I 



0.1 
0 

INERTIAL MEASUREMENTS ONLY 
(WITH STELLAR MONITOR) 

40 80 120 160 200 
TIME, DAYS 

(b) VELOCITY ESTIMATION ACCURACY COMPARISON 

240 

FIGURE 11 CONTINUED 

119 



0.1 

0.04 L I I I I I I I I I I I 
0 40 80 120 160 200 240 

TIME, DAYS 

(c) ACCELEROMETER BIAS UNCERTAINTY 

FIGURE 11 CONTINUED 

120 



I I I I . ..-I I I I I I I 
0 

(d) 

40 80 120 160 
TIME, DAYS 

200 240 

PREDICTED TERMINAL POSITION AND VELOCITY UNCERTAINTY 

FIGURE 11 CONTINUED 

121 



600C 

5ooc 

a;, M/SEC 

0 I B--m 0 

0 2 5 

0 3 --- IO 

80 120 
TIME, DAYS 

160 240 

FIGURE 12 EFFECT OF INITIAL VELOCITY UNCERTAINTY ON THE 
ACCURACY OF POSITION ESTIMATION, MARS RENDEZVOUS 
(205.4) 

122 



6000 -- 
I 

4000 
t 

3000 
t 

*a, i-1 
200 DAYS / \ 

I I 

1 I 
I 

I 
I 

1 \ 

OL- I I I I I I I I I I I 1 
0 40 80 120 160 200 240 

TIME, DAYS 

FICJJRE 13 COMPARISON OF POSITION ESTIMATION ACCURACY FOR A 
PURE BIAS ANDSLOWLYVARYINGACCELEROMETERERROR, 
MARS RENDEZWUS (205.4) 

123 



6000 

0 

I 
. I 
I 

-I 
I 
‘I 
I 
1 

cap, Da,, M/SEC2 

0 I w-m- lO-7 

0 10-6 

0 3 -mm lO-5 

0 40 80 120 160 200 240 
TIME, DAYS 

FIGURE 14 EFFECT OF ACCELEROMETER ERROR MAGNITUDE ON THE 
ACCURACY OF POSITION ESTIMATION, MARS RENDEZVOUS 
(205.4) 

124 



8000 

7000 

6000 

0;~ 0;7h 
@--- 5 SEC ARC 

0 1 0 II II 

@-- - 20 II II 

0 40 80 120 160 200 240 
TIME, DAYS 

FIGJRE 15 EFFECT OF CELESTIAL SENSOR RANDOM ERRORS ON THE 
ACCURACY OF POSITION ESTIMATION, MARS RENDEZVOUS 
(205o4) 

125 



7ooc 

6000 

5000 

4000 

3000 

2000 

1000 

0, 
( 

)- 

l- 

/- 

OBSERVATION INTERVAL 

0 I --mm I DAY 

0 
&-- 

211 ’ 
-5 II 

I \ 

I \O 
3 

4u t5u 120 160 200 240 
TIME, DAYS 

FIGURE 16 EFFECT OF CELFSTIAL OBSERVATION INTERVAL ON THE 
ACCURACY OF POSITION ESTIMATION, M?iRS RENDEZVOUS 
(205e4) 

126 



6000 

5000 

1000 

0 

I- 

I - 

I - 

BIAS 

SEC ARC 

I I I I I I I I I I I 

0 20 40 60 80 100 120 
TIME, DAYS 

FIGURE 17 POdITION ESTIMATION ACCURJGY FOR DIFFERENT 
COMBINATIONS OF CELESTIAL SEW3OR RANDOM AND 
BIAS ERRORS, MARS BEBIDEZVOUS (205,4) 

127 



RANDOM ERRORS 5 SEC ARC 

0; ’ ?‘h 

I I I I I I I 1 I I I 

0 20 40 60 80 100 120 
TIME, DAYS 

FIGURE 18 ESTIMATION PERFORMANCE FOR CELESTIAL SENSOR 
BIAS ERRORS, MARS RENDEZVOUS (20504) 

128 



5 
Y 

c 
- 

IO4 

IO3 

IO2 

- 

1 

I I I I I I I I I 

0 40 80 120 160 200 
TIME, DAYS 

FIGURE 19 REXWCTION OF TERMINAL POSITION UNCERTAINTY 
WITH SUCCESSIVE CELESTIAL OBSERVATIONS, 
MARS RENDEZVOUS (18io6) 

129 



F 

F 

IO’ i, 

IO4 

102b I I I I I I I I I I I 
0 20 40 60 80 

TIME, DAYS 
100 120 

FIGURE 20 REIXJCTION OF TERMINAL POSITION UNCERTAINTY 
WITH SUCCESSIVE CELFSTIAL OBSERVATIONS, 
VENUS RENDEZVOUS (120) 

130 



IO3 
1 

IPI I I I I I I I I I , 
0 20 40 60 80 100 120 

TIME, DAYS 

FIGURE 21 REDUCTION OF TERMINAL POSITION UNCERTAINTY 
WITH SUCCESSIVE CELESTIAL OBSERVATIONS, 
MARS FLYBY (120) 

131 

I. --- 



IO6 

IO5 

IO4 

IO3 

5 DAY OBSERVATION INTERVAL 

360 

I I 1 I I I I I I 
0 100 200 300 400 50 

TIME, DAYS 

FIGURE 22 REDUCTION OF TERMINAL POSITION UNCERTAINTY 
WITH SUCCESSIVE CELESTIAL OBSERVATIONS, 
JUPITER FLYBY (360) 

‘0 

132 NASA-Langley, 1966 CR-457 


